第1课时 对数函数的概念、图象及性质 课件--高一上学期数学人教A版(2019)必修第一册.pptx
《第1课时 对数函数的概念、图象及性质 课件--高一上学期数学人教A版(2019)必修第一册.pptx》由会员分享,可在线阅读,更多相关《第1课时 对数函数的概念、图象及性质 课件--高一上学期数学人教A版(2019)必修第一册.pptx(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4.44.4对数函数对数函数学习目标学习目标1.1.通过对数函数的概念及对数函数图象和性质的学习通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直培养数学抽象、直观想象素养观想象素养.2.2.通过对数函数图象和性质的应用通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养培养逻辑推理、数学运算素养.第第1 1课时对数函数的概念、图象及性质课时对数函数的概念、图象及性质知识梳理知识梳理自主探究自主探究师生互动师生互动合作探究合作探究知识梳理知识梳理自主探究自主探究知识探究知识探究1.1.对数函数的概念对数函数的概念一般地一般地,函数函数 叫做对数函数叫做对数函数,其中其中x x是
2、自变量是自变量,定定义域是义域是 .y=logy=loga ax(a0,x(a0,且且a a1)1)(0,+)(0,+)2.2.对数函数的图象与性质对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:定义定义y=logy=loga ax(a0,x(a0,且且a a1)1)底数底数a1a10a10a0,ax(a0,a1)1)是对数函数是对数函数,由此得到由此得到y=ln xy=ln x是对数函数是对数函数.故选故选C.C.答案答案:(1)C(1)C(2)(2)若函数若函数f(x)=logf(x)=loga ax+(
3、ax+(a2 2-4a-5)-4a-5)是对数函数是对数函数,则实数则实数a=a=.答案答案:(2)5(2)5方法总结方法总结判断一个函数是否为对数函数的方法判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如判断一个函数是对数函数必须是形如y=logy=loga ax(a0,x(a0,且且a a1)1)的形式的形式,即必即必须满足以下条件须满足以下条件:(1)(1)系数为系数为1.1.(2)(2)底数为大于底数为大于0,0,且不等于且不等于1 1的常数的常数.(3)(3)对数的真数仅有自变量对数的真数仅有自变量x.x.针对训练针对训练1 1:(1):(1)若函数若函数y=logy
4、=loga ax+ax+a2 2-3a+2-3a+2为对数函数为对数函数,则则a a等于等于()A.1A.1B.2B.2C.3C.3D.4D.4答案答案:(1)B(1)B(2)(2)已知对数函数的图象过点已知对数函数的图象过点M(9,2),M(9,2),则此对数函数的解析式为则此对数函数的解析式为.解析解析:(2)(2)设函数设函数f(x)=logf(x)=loga ax(x0,a0,x(x0,a0,且且a a1),1),因为对数函数的图象过点因为对数函数的图象过点M(9,2),M(9,2),所以所以2=log2=loga a9,9,所以所以a a2 2=9,=9,又又a0,a0,解得解得a=
5、3.a=3.所以此对数函数的解析式为所以此对数函数的解析式为y=logy=log3 3x.x.答案答案:(2)y=log(2)y=log3 3x x探究点二探究点二对数型函数的定义域对数型函数的定义域 例例2 2 求下列函数的定义域求下列函数的定义域.(1)y=log(1)y=loga a(3-x)+log(3-x)+loga a(3+x)(a0,(3+x)(a0,且且a a1);1);方法总结方法总结(1)(1)求解含对数式的函数定义域求解含对数式的函数定义域,若自变量在底数和真数上若自变量在底数和真数上,要保证真数大要保证真数大于于0,0,底数大于底数大于0,0,且不等于且不等于1.1.(
6、2)(2)对数函数对数函数y=logy=loga ax x的定义域为的定义域为(0,+(0,+).).(4)(4)形如形如y=f(logy=f(loga ax)x)的复合函数在求定义域时的复合函数在求定义域时,必须保证每一部分都要有必须保证每一部分都要有意义意义.对数函数的图象对数函数的图象探究点三探究点三类型一对数型函数图象过定点问题类型一对数型函数图象过定点问题 例例3 3(1)(1)函数函数y=logy=loga a(x-3)+1(a0,(x-3)+1(a0,且且a a1)1)的图象恒过定点的图象恒过定点P,P,则点则点P P的坐的坐标是标是()A.(4,1)A.(4,1)B.(3,1)
7、B.(3,1)C.(4,0)C.(4,0)D.(3,0)D.(3,0)解析解析:(1)(1)令令x-3=1,x-3=1,求得求得x=4,y=1,x=4,y=1,可得它的图象恒过定点可得它的图象恒过定点P(4,1).P(4,1).故选故选A.A.答案答案:(1)A(1)A方法总结方法总结涉及与对数函数有关的函数图象过定点问题的一般规律涉及与对数函数有关的函数图象过定点问题的一般规律:若若f(x)=klogf(x)=kloga ag(x)+g(x)+b(a0,b(a0,且且a a1),1),且且g(m)=1,g(m)=1,则则f(x)f(x)图象过定点图象过定点P(m,b).P(m,b).方法总结
8、方法总结根据对数性质根据对数性质logloga a1=0,log1=0,loga aa=1(a0,a=1(a0,且且a=1)a=1)可知可知,若若logloga ax=0,x=0,则必有则必有x=1,x=1,若若logloga ax=1,x=1,则必有则必有x=a.x=a.针对训练针对训练3 3:(1):(1)(多选题多选题)下列四个函数中过相同定点的函数有下列四个函数中过相同定点的函数有()A.y=ax+2-aA.y=ax+2-aB.y=xB.y=xa-2a-2+1+1C.y=aC.y=ax-3x-3+1(a0,a+1(a0,a1)1)D.y=logD.y=loga a(2-x)+1(a0,
9、a(2-x)+1(a0,a1)1)解析解析:(1)(1)由于函数由于函数y=ax+2-a=a(x-1)+2,y=ax+2-a=a(x-1)+2,令令x=1,x=1,可得可得y=2,y=2,故该函数经过定点故该函数经过定点(1,2),(1,2),由于函数由于函数y=xy=xa-2a-2+1,+1,令令x=1,x=1,可得可得y=2,y=2,故该函数经过定点故该函数经过定点(1,2),(1,2),由于由于y=ay=ax-3x-3+1(a0,a+1(a0,a1),1),令令x-3=0,x-3=0,求得求得x=3,y=2,x=3,y=2,故该函数经过定点故该函数经过定点(3,2),(3,2),由于由于
10、y=logy=loga a(2-x)+1(a0,a(2-x)+1(a0,a1),1),令令2-x=1,2-x=1,求得求得x=1,y=1,x=1,y=1,故该函数经过定点故该函数经过定点(1,1).(1,1).故选故选AB.AB.答案答案:(1)AB(1)AB(2)(2)已知函数已知函数f(x)=logf(x)=loga a(x-m)+n(x-m)+n的图象恒过定点的图象恒过定点(3,5),(3,5),则则lg m+lg nlg m+lg n的值是的值是.解析解析:(2)(2)函数函数f(x)=logf(x)=loga a(x-m)+n(x-m)+n的图象恒过定点的图象恒过定点(1+m,n),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
链接地址:https://www.taowenge.com/p-63724307.html
限制150内