《人教版高一数学指数函数及其性质 新课标 人教(A).ppt》由会员分享,可在线阅读,更多相关《人教版高一数学指数函数及其性质 新课标 人教(A).ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、指数函数及其性质指数函数及其性质玉环实验学校2021/8/9 星期一1问题的提出问题的提出问题据国务院发展研究中心问题据国务院发展研究中心2000年发表的年发表的未来未来20年我国发展前景分析年我国发展前景分析判断,未来判断,未来20年,我国年,我国GDP(国国内生产总值内生产总值)年平均增长率可望达到年平均增长率可望达到7.3.那么,在那么,在2001年年2020年,各年的年,各年的GDP可望为可望为2000年的多少倍?年的多少倍?如果把我国如果把我国2000年年GDP看成是看成是1个单位,个单位,2001年为第一年为第一年,那么:年,那么:设设x 年后我国的年后我国的GDP为为2000年的
2、年的y倍,那么倍,那么 y=(1+7.3%)=1.073 (xN*,x20)即从即从2000年起,年起,x年后我国的年后我国的GDP为为2000年的年的1.073 倍倍1年后(即年后(即2001年),我国年),我国GDP可望为(可望为(17.3%)2年后(即年后(即2002年),我国年),我国GDP可望为(可望为(17.3%)4年后(即年后(即2004年),我国年),我国GDP可望为(可望为(17.3%)3年后(即年后(即2003年),我国年),我国GDP可望为(可望为(17.3%)2021/8/9 星期一2问题问题2当生物死亡后,它机体内原有当生物死亡后,它机体内原有的碳的碳14会按确定的规
3、律衰减,大约每会按确定的规律衰减,大约每经过经过5730年衰减为原来的一半,这时年衰减为原来的一半,这时间为间为“半衰减半衰减”。根据此规律,人们。根据此规律,人们获得了生物体内碳获得了生物体内碳14含量含量P与死亡年数与死亡年数t之间的关系为之间的关系为2021/8/9 星期一3讨论讨论上面的两个函数有什么共同特征?上面的两个函数有什么共同特征?底数是什么?指数指数是什么?底数是什么?指数指数是什么?2021/8/9 星期一4一、指数函数的概念一、指数函数的概念 的函数称为指数函数的函数称为指数函数.1 1、定义、定义:形如形如其中其中x x是自变量是自变量.函数的定义域为函数的定义域为R.
4、2、思考:、思考:为什么规定为什么规定0且且1呢?否则会出现什么情呢?否则会出现什么情况呢?况呢?2021/8/9 星期一5请看下面函数是否是指数函数:(1)(2)(3)(4)(5)巩固练习:巩固练习:2021/8/9 星期一6二.指数函数的图象与性质 讨论:你能类比前面讨论函数性质时的思路,讨论:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究研究方法:画出函数的图象,结合图象研究函数的性质函数的性质 研究内容:定义域、值域、特殊点、单调性、研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇
5、偶性最大(小)值、奇偶性 2021/8/9 星期一7作图:在同一坐标系中画出下列函数图象:作图:在同一坐标系中画出下列函数图象:探讨:函数探讨:函数 与与 的图象有什么关系的图象有什么关系?如何由?如何由 的图象画出的图象画出 的图象?根的图象?根据两个函数的图象的特征,归纳出这两个据两个函数的图象的特征,归纳出这两个指数函数的性质指数函数的性质.2021/8/9 星期一82021/8/9 星期一93.归纳性质:函数1.定义域:2.值 域:5.奇偶性:既不是奇函数也不是偶函数 的性质:4.在 R 上是增函数3.x=0 时,y=1.思考思考(1)底数变为)底数变为3?(2)的性质?的性质?202
6、1/8/9 星期一10Oxy(0,1)y=1Oxy(0,1)y=1定义域:定义域:值域:值域:奇偶性:奇偶性:在在R上是增函数上是增函数在在R上是减函数上是减函数单调性:单调性:R非奇非偶函数非奇非偶函数过点(过点(0,1)即即 x=0 时,时,y=1 x0时,时,y1;x0时时,0y0时,时,0y1;x1 图图象象性性质质定义域:定义域:R值域:值域:奇偶性:奇偶性:非奇非偶函数非奇非偶函数过点过点(0,1)即即x=0时,时,y=1 单调性:单调性:2021/8/9 星期一11思考:思考:1、a 1时,时,a 的变化对函数的图像的变化对函数的图像有何变化?有何变化?2、?2021/8/9 星
7、期一12例例1 求下列函数的定义域求下列函数的定义域2021/8/9 星期一13例例2 2.比较下列各组数的大小比较下列各组数的大小 例题讲解:例题讲解:解:(解:(1 1)由于底数由于底数1.3 11.3 1,所以指数函数,所以指数函数y=y=在在R R上是上是 因为因为-2.7 -2.5-2.7 1 1,所以指数函数,所以指数函数y=y=在在R R上是上是增函数增函数 因为因为 ,所以所以 因为因为 ,所以所以 2021/8/9 星期一14课堂小结课堂小结无论 为何值,指数函数定义域为,都过点(0,1).值域为都有(1)(2)时,在定义域内为增函数;时,在定义域内为减函数(3)时,时,1.指数函数的性质:指数函数的性质:2021/8/9 星期一152.利用指数函数单调性比大小的方法:(1)构造函数并指明函数的单调区间及相应的单调性.(2)自变量的大小比较.(3)函数值的大小比较.2.搭桥比较法:用特殊的数1或0.1.构造函数的方法:数的特征是同底数不同指数(包括可转化为同底的)2021/8/9 星期一16比较下列各组数的大小.(1)(2)(3)巩固练习:巩固练习:作业作业 布置:布置:P65习题习题2.1 5,6,7,82021/8/9 星期一172021/8/9 星期一18
限制150内