2022年总结高中数学选修模块教学中的重点知识内容 .docx
《2022年总结高中数学选修模块教学中的重点知识内容 .docx》由会员分享,可在线阅读,更多相关《2022年总结高中数学选修模块教学中的重点知识内容 .docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 总结高中数学选修模块教学中的重点学问内容,并做好内容解析;第一部分 简洁规律用语1、 命题: 用语言、符号或式子表达的,可以判定真假的陈述句 . 真命题: 判定为真的语句 . 假命题: 判定为假的语句 . 2、“ 如,就” 形式的命题中的称为命题的 条件 ,称为命题的 结论 . 3、 原命题:“ 如,就”逆命题:“ 如 ,就 ”否命题:“ 如,就 ”逆否命题:“ 如,就 ”4、 四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系5、如,就是的 充分条件 ,是的 必
2、要条件 如,就是的 充要条件 (充分必要条件)利用集合间的包含关系:例如:如,就A 是 B 的充分条件或B是 A的必要条件;如A=B,就 A 是 B 的充要条件;6、 规律联结词: 且 and :命题形式;或(or ):命题形式;非( not ):命题形式 . 真真真真假真假假真假假真假真真真假假假假7、全称量词“ 全部的” 、“ 任意一个” 等,用“ ” 表示;全称命题 p:;全称命题 p 的否定 p:;存在量词“ 存在一个” 、“ 至少有一个” 等,用“ ” 表示;特称命题 p:;特称命题 p的否定 p:;其次部分 圆锥曲线1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为 椭
3、圆 即:;这两个定点称为 椭圆的焦点 ,两焦点的距离称为椭圆的焦距2、 椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程名师归纳总结 范畴且且第 1 页,共 7 页- - - - - - -精选学习资料 - - - - - - - - - 、顶点轴长、短轴的长长轴的长、焦点、焦距 对称性 关于轴、轴、原点对称 离心率3、平面内与两个定点,的距离之差的肯定值等于常数(小于)的点的轨迹称为 双曲线 即:;这两个定点称为 双曲线的焦点 , 两焦点的距离称为双曲线的焦距4、 双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形 标准方程范畴或,虚轴的长实轴的长或,顶点、轴长、焦点焦距 对称性
4、 关于轴、轴对称,关于原点中心对称 离心率 渐近线方程5、实轴和虚轴等长的双曲线称为 等轴双曲线 6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为 为抛物线的准线7、抛物线的几何性质:标准 方程图形顶点抛物线 定点称为 抛物线的焦点 ,定直线称名师归纳总结 - - - - - - -第 2 页,共 7 页精选学习资料 - - - - - - - - - 对称轴轴轴焦点准线方程离心率范畴8、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即9、 焦半径公式 :如点在抛物线上,焦点为,就;如点在抛物线上,焦点为,就;第三部分 导数及其应用 1、函数从到的 平均变
5、化率:2、 导数定义: 在点处的导数记作;3、函数在点处的导数的几何意义是曲线在点处的切线的斜率4、 常见函数的导数公式:; 5、 导数运算法就:;6、在某个区间内,如,就函数在这个区间内单调递增;如,就函数在这个区间内单调递减7、 求函数的极值的方法是:解方程当时:假如在邻近的 左侧,右侧 ,那么是极大值;假如在邻近的 左侧,右侧 ,那么是微小值8、 求函数在上的最大值与最小值的步骤是:求函数在内的极值;将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值名师归纳总结 9、导数在实际问题中的应用:最优化问题;复数第 3 页,共 7 页第四部分- - - - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年总结高中数学选修模块教学中的重点知识内容 2022 总结 高中数学 选修 模块 教学 中的 重点 知识 内容
限制150内