初中数学概念教学培训心得体会(共8篇).docx
《初中数学概念教学培训心得体会(共8篇).docx》由会员分享,可在线阅读,更多相关《初中数学概念教学培训心得体会(共8篇).docx(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学概念教学培训心得体会(共8篇)第1篇:初中数学概念教学的心得体会初中数学概念教学的心得体会数学学问都是以概念为基础的。要使学生获得系统而又全面的数学学问,必需让学生获得清楚明确的数学概念。老师可以设置正确、合理的教学“目标方向”,让学生理解概念的逻辑性、明确概念的层次性、驾驭概念的抽象性、抓住概念的扩展性,经过反复运用,让学生熟能生巧,帮助学生更好地驾驭数学学问的内涵与实质。心理学认为:正确、合理的“目标方向”是激发人们主动性、提高工作效率的最基本、最重要的因素之一。老师上课时始终围绕例题讲解并描述,实行“零售”数学学问的方法,把数学概念当作“尾巴”来处理,不重视概念的教学,课后布置各
2、种题型,实行题海战术,老师成天忙劳碌碌钻在题库里,学生昏昏欲睡埋到解题中。结果,中高考试卷中有练习过的题目拿得住,而稍有改变的习题就呆住了。其实数学试题是千变万化的,哪能遇上一成不变的题目?事实证明:只要求学生解习题,而不给学生讲透数学概念、实质问题,等于只是给了学生一把对号开锁的钥匙,而不是教给学生解剖锁的结构原理。不交给学生一把万能钥匙,学生是很难找到窍门的。因此有必要进行系统而又肃穆的概念教学,事实上数学学问都是以概念为基础的。要使学生获得系统的数学学问,首先必需获得清楚明确的数学概念。一、理解概念的逻辑性数学概念可分为两个重要方面:一是概念的“质”,也就是概念的内涵(概念的本质属性);
3、二是概念的“量”,也就是概念的外延(概念的全部对象的和)。抓住概念的本质特征,把握定义中的关键字句,弄清概念间的区分和它们的内在联系,把握概念的内涵,加深对概念外延的理解。因此,我们在平常的教学中应特殊留意把不同的概念联系在一起,进行比较,并从不同侧面加深对概念的理解,使它系统化、网络化,这样就不会造成学生对概念理解的模糊,从而导致错误地运用。相反,有利于学生对学问的贮藏,有利于“牵一发而动全身”。二、明确概念的依次性苏科版教材中一般的数学概念,都是通过对试验现象或某些详细的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理动身,通过一番推理而扩展成为一系
4、列的定义或者定理.而每一个新出现的概念都依靠着已有的概念来表达,或是由已有的概念推导出来的。因此,1 在平常的教学中我们肯定要留意概念教学的依次性。正是这些概念的出现的依次性才将我们的教材有机地串联在一起,形成学问的网络结构图。针对概念形成的阶段性、发展性和连贯性,我们老师教学中应当留意:在学生对某些预备概念模糊不清的状况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特殊重要的、关键性的预备概念,老师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。如上述的“一元二次方程”的概念中,“一元一次方程” 的概念就是关键性的预备学问,学生真正理解了“方
5、程”“整式方程”等概念,方可正确地领悟“一元二次方程”的概念,才不至于出现一些低级的错误。三、驾驭概念的抽象性中学数学教材中的很多原始概念,如点、线、面、体、数、常数、变数等等,都是由详细的事物视察然后再抽象出来的。由此可知,概念是人们对感性材料进行抽象的产物;感性相识是形成概念的基础。假如学生没有感性相识或感性相识不完备时,我们就应当借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性相识。对于一些概念(属概念),老师可以干脆从已知的概念(种概念)中引入,不必再经过取得感性相识的阶段。如有理数的概念,就可以干脆从整数、分数的概念中引入。四、抓住概念的扩展性概念的
6、内涵和外延还存在着“反变”的相依关系,内涵越多,外延就越小;内涵越少,外延就越大。四边形是个也许念,平行四边形是个小概念,正方形是个更小的概念,但正方形的四边相等、四角相等、对角形相互垂直平分且相等的共同属性,就比四边形的共同属性四条边、四个角来得多。因此,在指导学生解题的过程中,老师要要求学生不断运用相关的概念组成正确而又恰当的推断,进行逻辑推理;不断加深学生对概念的理解和驾驭。这样,我们的学生解题实力才能渐渐得以提高。“授之以鱼,不如授之以渔”。老师只有平常重视对数学概念的教学,才能培育出学生的应变实力,才能让学生建立起整个初中学问的结构图,才能让学生真正学会分析问题、比较问题和解决问题,
7、才能让学生从茫茫题海中解脱出来,也才能真正做到“欢乐数学”!第2篇:初中数学概念课的心得体会初中数学概念课的心得体会蠡吾镇三中周南2023年4月22日保定市数学专家徐建乐老师为我们全县的数学老师带来了一场精彩的概念课的讲座,使我们受益匪浅. 1、使大部分的老师明白了概念课的基本模式,真正提高了上课效率,使老师在上课水平上达到了仿照、内化、形成自己的特色的目的;2、在整个概念课的结构中学生不只学到了学问,更重要的是激发了学生的思维,培育了学生的实力;这样赐予学生的不仅仅是学问,而是创建力。初中数学中的概念,是数学基础学问的重要部分,数学概念是学生进行推断、推理的基础,清楚的概念是正确思维的前提。
8、这就促使笔者常去思索如何抓好概念教学,如何让学生根据自身的基本规律获得概念,怎样使学生真正驾驭概念呢?可从以下几方面去尝试。1、概念要建立在生活实践上,借助真实材料铺垫教学中老师不应只简洁地给出定义,而应加强对概念的引出,使学生经验概念的形成和发展过程,加深对新概念的印象。创设情境是解决这一问题的最好方法,在初中数学概念教学中创设问题情境是非常有价值的。问题情境的创设也促进了老师对课程的理解,使概念教学变成了师生互动的情景教学,学生在问题情境的教学中经验了实际问题抽象出数学概念的过程。2、深化剖析数学概念,揭示其本质1 / 3 数学概念是用精练的数学语言表达出来的,在教学中,抽象概括出概念后,
9、还要留意深化剖析概念的定义,帮助学生进一步理解概念的含义。如为了使学生更好地理解驾驭数学概念,我们必需揭示其本质特征,进行逐层剖析。例如,在学习函数概念时,(1)“在某个过程中,有两个变量x和y”是说明:a.、变量的存在性;b、函数是探讨两个变量之间的依存关系;(2)“对于在某一范围内的每一个确定的值”是说明变量x是在肯定范围内取值,即允许值范围也就是函数的定义域。(3)“y有唯一确定的值和它对应”说明有唯一确定的对应规律。(4)“y是x的函数”揭示了谁是谁的函数,由以上剖析可知,函数概念的本质3、用联系的观点刚好下定义巩固数学概念往往不是孤立的,很多概念之间有着紧密的联系。理清概念之间的联系
10、既能促进新概念的自然引入,又能揭示已学过的概念的数学本质。因此,下定义时老师应留意概念间的联系,帮助学生理清脉络,建立概念体系,促使学生做到举一反三、触类旁通。如由三角函数定义可导出同角三角函数关系式,正、余弦函数这一概念为背景,建立一个由与三角函数有关的概念、定义、公式构成的学问网,开拓学生视野,培育学习的归纳实力。4、重应用深化提高数学教学离不开解题,在教学过程中引导学生正确敏捷地运用数学概念解题,是培育学生解题技能的一个有效途径,如通过基本概念的2 / 3 正用、反用、变用等,培育学生计算、变形等基本技能。因此,老师应当多给学习供应练习的机会,提高学生敏捷应用概念的实力。5、梳理概念,融
11、汇贯穿数学中的概念,有些是相互联系的,相互影响的,我们在教完一个单元或一章后,要擅长引导学生把有关概念串起来,充分揭示它们之间的内部规律和联系,从而使学生对所学概念有个全面、系统的理解。1、概念课上对概念的处理:克服形式主义,要通过适量的正反例子加以剖析,并进行分析鉴别,使之与相近概念不致混淆。对一些不宜下定义的基本概念,应赐予清楚精确的“描述性定义”。2、注意从对实物的感受激发学生学习的爱好,再由抽象的特征浓缩成数学概念,学生简单接受。3、留意数学符号语言的运用,来强化概念的应用。4、教学环节不要过于程序化,要注意实效,据实际做适当调整。3 / 3第3篇:小学数学概念教学培训心得百度文库:工
12、作范文 小学数学概念教学培训心得xxx年x月22日,我听了海口市英才小学杨明丽专家作小学数学概念教学基本模式报告,感悟颇深,印象深刻,收获许多.第一环节“创设情境,发觉问题”问题是数学学习“心脏”,没有问题学习目标就不明确.而小学生数学问题提出必需在肯定情境中才能有效地实现.创设数学情境目就是引发学生学习爱好,激发学生思维,引导学生发觉并提出与本课学习亲密相关数学问题,以备合作探究.培育学生独立发觉问题、提出问题、思索问题实力.其次环节“合作探究,解决问题”数学课程标准指出“动手实践、自主探究与合作沟通是学生学习数学重要方式.”而合作实力是当今社会所必备基本实力之一,在合作沟通中可以拓展学生思
13、维空间.所以,合作实力培育必需在课堂上加以落实,让学生在合作基础上绽开竞争.面对实际问题,能够主动尝试从数学角度运用所学学问和方法寻求解决问题策略,是数学应用意识重要表现,也是能否将所学学问和方法运用于实际关键所在.第三环节“展示沟通,内化提升”合作探究是学生充分感知过程,而展示沟通是学生感性学问相互碰撞过程.在沟通、研讨过程中,通过比较、质疑和反思,不断优化个人和小组学习成果,直至达成共识,内化为个体解决问题策略,并形成科学结论,找出对解决当前问题适用策略.问题一旦解决,学生思维实力会随之发生改变,对学生学习实力提高和思维品质发展都具有促进作用.在展示沟通过程中,使学生感悟数学学习乐趣,找到
14、自身价值体现,体验利用数学解决实际问工作范文、尽在百度百度文库:工作范文题胜利愉悦.这样不但能够培育学生自信念,而且还可以培育学生正确数学学习情感、看法和价值观.第四环节“回顾整理,拓展应用”一堂课胜利与否,结课很重要.老师要在完成一个教学内容或教学活动时进行适当总结,对学问进行归纳总结,使学生对所学学问进行有针对性回顾和归纳,帮助学生形成学问系统.再通过拓展应用检验学生对新知理解和运用水平.感谢阅读!工作范文、尽在百度第4篇:初中数学概念教学论文:浅论初中数学概念教学浅论初中数学概念教学勐腊二中 周朝旭摘要:在中学数学教学中,正确理解数学概念是驾驭数学基础学问的前提,是学好定理、公式、法则和
15、数学思想的基础,搞清概念是提高解题实力的关键。只要对概念理解的深透,才能在解题中做出正确的推断。因此,在数学教学过程中,数学概念的教学显得尤为重要。学生数学实力的发展取决于他对数学概念的坚固驾驭与深刻理解与否。关键词:数学实力、发展、理解、剖析、揭示概念是客观事物本质属性在人们头脑中的反映。数学概念反映现实世界的空间形式和数量关系的本质属性的思维形式。在中学数学教学中,正确理解数学概念是驾驭数学基础学问的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题实力的关键。只要对概念理解的深透,才能在解题中做出正确的推断。因此,在数学教学过程中,数学概念的教学显得尤为重要。学生数学实力的
16、发展取决于他对数学概念的坚固驾驭与深刻理解与否。而在现实中,很多学生对数学的学习,只注意盲目的做习题,不注意对数学概念的驾驭,对基本概念模糊不清。做习题不懂得从基本概念入手,思索解题依据,探究解题方法,而是跟着感觉走。这样的学习,必定越学越糊涂,因而数学概念的教学在整个数学教学中有其不容忽视的地位与作用。下面仅结合本人平常的教学实践,谈一点肤浅的相识与体会。一、概念的引入:1.从学生已有的生活阅历、熟知的详细事例中进行引入。如“圆”的概念的引出前,可让同学们联想生活中见过的年轮、太阳、五环旗、圆状跑道等实物的形态,再让同学用圆规在纸上画圆,也可用打算好的定长的线绳,将一端固定,而另一端带有铅笔
17、并绕固定端旋转一周,从而引导同学们自己发觉圆的形成过程,进而总结出圆的特点:圆周上随意一点到圆心的距离相等,从而猜想归纳出“圆”的概念。2.在复习旧概念的基础上引入新概念。概念复习的起步是在已有的认知结构的基础上进行的。因此,在教学新概念前,假如能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,就可以先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延长,复习一元一次方程是合乎学问逻辑的。通过比较得出两种方程都是只含有一个未知数的整式方程,差异仅在于未知数的最高次数不同。由此,很简单建立起“一元二次方程”的概念。二、分析概念含义
18、,抓住概念本质。1.揭示含义,突出关键词。数学概念严谨、精确、简练。老师的语言对于学生感知教材,形成概念有重要的意义,因此要特殊留意用词的严格性和精确性。老师要用生动、形象的语言讲清概念的每一个字、句、符号的意义,特殊是关键的字、词、句,这是指导学生驾驭概念,并相识概念的前提。如:“分解因式”概念:“把一个多项式化成几个整式的积的形式,这种变形叫把这个多项式分解因式。”在教学中学生往往只注意“积”这个关键词,而忽视了“整式”,易造成对分解因式的错误相识。所以在教学中务必强调,并与学生分析这两处关键词的含义,加深对概念的理解。2.分析概念,抓住本质。数学概念大多数是通过描述定义给出他的准确含义,
19、他属于理性相识,但来源于感性相识,所以对于这类概念肯定要抓住它的本质属性。如:“互为补角”的概念:“假如两个角的和是平角,则这两个角互为补角。”其本质属性:(1)必需具备两个角之和为180,一个角为180或三个角为180都不是互为补角,互补角只就两个角而言。(2)互补的两个角只是数量上的关系,这与两个角的位置无关。通过这两个本质属性的分析,学生对“互为补角”有了全面的理解。3.剖析改变,深化概念。 数学概念都是从正面阐述,一些学生只从文字上理解,以为驾驭了概念的本质,而遇到详细的数学问题却又难以做出正确的推断。因此,在教学过程中,必需在学生正面相识概念的基础上,通过反例或变式从反面去剖析数学概
20、念,凸显对象中隐藏的本质要素,加深学生对概念理解的全面性。如:在学习对顶角的概念后,让学生做题: (1)下列表示的两个角,哪组是对顶角? (a) 两条直线相交,相对的两个角 (b) 顶点相同的两个角 (c) 同一个角的两个邻补角 前后联系,多方印证,加深相识。部分学生对概念的全面理解不行能一蹴而就,而是要经验:实践相识再实践再相识的过程,这是个“正确”与“错误”摇摆不定的过程,更是一个对概念的理解不断深化的过程。事实上,学生在初步学习某一数学概念之后,对概念的理解并不怎么深刻,而是通过对后续学问的学习让学生回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。如:学生刚接触“二次
21、函数”的概念时,仅能从形式上推断某一函数是否为二次函数。但当他们学习了其图象,探讨了图象的性质后就能依据a得出图象的开口方向,由a、b确定图象的对称轴,由a、b、c给出图象的顶点坐标。这时对二次函数的概念自是记忆深刻,能脱口而出了。三、概念的记忆。1.并列概念,举一反三。、如:一元一次方程的概念:“只含有一个未知数,并且未知数的指数为一(次),这样的方程叫做一元一次方程”,清晰了“元”与“次”的含义,则一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通过纵横对比,在类比中找特点,在联想中求共性,把数学学问系统化,学生轻轻松松记概念。2.易混淆概念,联系区分。任何一个概念都有它的内
22、涵和外延,外延的大小与内涵成反比关系。内涵越多,外延就越小;内涵越少,外延就越大。把握概念的内涵与外延,能大大增加学生对概念的明晰度,提高鉴别实力,避开张冠李戴,为此,把所教概念同类似的相关的概念相比较,分清它们的异同点及联系,也就显得非常重要。如:学完“轴对称”与“轴对称图形”的概念后,可引导学生找出两者之间的联系和区分。联系:两者都有对称轴,如把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形,如把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分成轴对称。区分:“轴对称”是指两个图形成轴对称,主要指这两个图形特别的位置关系;而“轴对称图形”仅仅是指一个图形,主要指
23、这个图形所具备的特别形态。通过这样的联系与区分,学生加深了对概念的理解,避开混淆,从而提高学生认知概念的清楚度。3.从属概念,图表体现。有从属关系的概念其外延之间有着相互包含的关系,在复习阶段若以图表的形式表现,能使概念系统化、条理化,有利于学生的记忆和理解。四、概念的巩固。1.利用新概念复习就概念。如:在四边形这一章中:平行四边形具有四边形全部性质,矩形具有平行四边形全部性质,菱形、正方形具有平行四边形的全部性质,正方形具有矩形、菱形的全部性质。这样链锁式概念教学,既驾驭了新概念又加深了对就概念的理解。2.加强预习。在课堂教学中优先考虑概念题的支配,精讲精练,讲练结合,合理支配,选题时留意题
24、目的典型性、多样性、综合性和针对性,做到相关概念结合练,易混淆概念对比练,主要概念反复练。3.对学生在练习中,课外作业中出现的错误,要抓紧不放,刚好订正。概念教学的重点不是记熟概念,而是理解和应用概念解决实际问题。因此,老师要引导每一位学生清晰的相识到所犯错误是哪一个概念用错了,或者是将哪一个概念的关键词忽视了,今后遇到类似的问题怎么办。即使是其它方面的错误也要找出是否概念不清而致错,予以分析订正。4.每一单元结束后,要进行概念总结。总结后,要特殊留意把同类概念区分分析清晰,把不同类概念的联系分析透彻。概念的形成是一个由特别到一般的过程,而概念的运用则是一个由一般到特别的过程,它们是学生驾驭概
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 概念 教学 培训 心得体会
限制150内