支持向量机原理.ppt
《支持向量机原理.ppt》由会员分享,可在线阅读,更多相关《支持向量机原理.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、支持向量机2014-2-21本讲主要内容u一.支持向量机u二.最大间隔分类器u三.核函数u四.软间隔优化u五.支持向量机总结一.SVMwarmingup u 1.1 SVM概念简介u 1.2 超平面 u 1.3 logistic回归u 1.4 形式化表示u 1.5 函数间隔与几何间隔 1.1SVM概念简介n支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。n通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线
2、性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。1.2 超平面 n超平面H是从n维空间到n-1维空间的一个映射子空间。n设d是n维欧式空间R中的一个非零向量,a是实数,则R中满足条件dX=a的点X所组成的集合称为R中的一张超平面。1.3 logistic回归nLogistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。1.3 logistic回归n形式化表示:n
3、 假设函数为:x 是 n 维特征向量,函数 g 就是 logistic 函数。其中 图像如图所示:可以看到,将无穷映 射到了(0,1)1.4 形式化表示n结果标签是y=-1,y=1,替换logistic回归中的y=0和y=1。n同时将替换成w和b。以前的 ,其中认为 。现在我们替换 为b,后面 替换为 (即 )。n n我们只需考虑 的正负问题,而不用关心g(z),因此我们这里将g(z)做一个简化,将其简单映射到y=-1和y=1上。映射关系如下:1.5 函数间隔与几何间隔n定义函数间隔为:x是特征,y是结果标签。i表示第i个样本。(这是单个样本)全局函数间隔:在训练样本上分类正例和负例确信度最小
4、那个函数间隔1.5 函数间隔与几何间隔n几何间隔:n全局几何间隔:二.最大间隔分类器u 2.1 二次规划原问题建立u 2.2 拉格朗日对偶 2.2.1 等式约束 2.2.1 不等式约束u 2.3 最大间隔分类器2.1 二次规划原问题建立n形式1:n形式2:n形式3:2.2拉格朗日对偶之等式约束n问题:n目标函数是f(w),通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为:nL是等式约束的个数。然后分别对w和求偏导,使得偏导数等于0,然后解出w和。2.2拉格朗日对偶之不等式约束n问题:n利用拉格朗日公式变换:n令n知2.2拉格朗日对偶之不等式约束n原来要求的min f(w)可以
5、转换成 求了。n利用对偶求解:n D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将和看作是固定值。之后在 求最大值的话:2.2拉格朗日对偶之不等式约束n下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的。并且存在w使得对于所有的i,。在这种假设下,一定存在 使得是 原问题的解,是对偶问题的解。还有另外,满足库恩-塔克条件(Karush-Kuhn-Tucker,KKT condition),该条件如下:n2.3 最大间隔分类器n重新回到SVM的优化问题:n我们将约束条件改写为:2.3 最大间隔分类器n 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 支持 向量 原理
限制150内