《解析几何 坐标系变换优秀课件.ppt》由会员分享,可在线阅读,更多相关《解析几何 坐标系变换优秀课件.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解析几何解析几何坐标系变坐标系变换换第1页,本讲稿共39页定定义义 设设,令令称称矩矩阵阵为为矩矩阵阵与与矩矩阵阵的的乘乘积,记为积,记为。方法如下:方法如下:矩阵的乘法矩阵的乘法第2页,本讲稿共39页记为记为第3页,本讲稿共39页第4页,本讲稿共39页例如例如不存在不存在.第5页,本讲稿共39页第6页,本讲稿共39页 主主对对角角元元全全为为1 1而而其其他他元元素素全全为为零零的的n n阶方阵称为阶方阵称为n n阶单位矩阵,记为阶单位矩阵,记为 或或 ,即即定义定义称为称为单位矩阵单位矩阵(或(或单位阵单位阵).第7页,本讲稿共39页性质性质1 1 对任一对任一m mn n矩阵矩阵 ,均有
2、均有 ,第8页,本讲稿共39页第9页,本讲稿共39页一一.仿射坐仿射坐标系系 定义定义定义定义:空间中一点空间中一点OO与三个不共面向量与三个不共面向量与三个不共面向量与三个不共面向量 e e1 1,e2,e3一起构成空间的一个一起构成空间的一个仿射标架仿射标架,记记O,e1,e2 2,e3.称称称称e1 1,e2,e3为它的为它的坐标向量坐标向量.O称为它的称为它的原点原点.对于空间任意一点对于空间任意一点A,把向量把向量OA(称为称为A的定位的定位向量向量)对对e1,e2 2,e3的分解系数构成的有序数组称为的分解系数构成的有序数组称为点点A关于上述仿射标架的关于上述仿射标架的仿射坐标仿射
3、坐标仿射坐标仿射坐标.第10页,本讲稿共39页 e e3 3e e2 2e e1 1O OP POP=ae1+be2+ce3第11页,本讲稿共39页 仿射坐标系仿射坐标系O;e1,e2 2,e3.任意点任意点P,存在唯一的有序数组存在唯一的有序数组存在唯一的有序数组存在唯一的有序数组(a a,b b,c)使得使得OP=ae e1+be2+ce3.e e3 3e e2 2e e1 1O OP P坐标原点坐标原点点点点点P的的的的定位向量定位向量坐标向量坐标向量坐标向量坐标向量或或或或基基基基P的的坐标坐标坐标坐标第12页,本讲稿共39页在不同的坐标系下,同一个点的坐标是不同的,从而图形的方程也是
4、不同的。问题问题1:对于给定的图形,怎样选坐标系?使得它的:对于给定的图形,怎样选坐标系?使得它的方程最简单。方程最简单。问题问题2:在不同的坐标系下,同一图形的不同方程之:在不同的坐标系下,同一图形的不同方程之间有什么关系?间有什么关系?第13页,本讲稿共39页设在空间中我们取定两个仿射坐标系,它们的标架分别为 和Oe1e2e3Oe1e2e3M第14页,本讲稿共39页设 在 中的坐标依次为第15页,本讲稿共39页用矩阵表示为第16页,本讲稿共39页矩阵称为从坐标系 到 的过渡矩阵,它是以 在 中的坐标为各个列向量的三阶矩阵。第17页,本讲稿共39页设向量 在 和 中的坐标分别为 它们与 和
5、之间的位置关系有直接相关的。第18页,本讲稿共39页于是由坐标的定义,第19页,本讲稿共39页第20页,本讲稿共39页这说明 在 中的坐标为用矩阵表示为:第21页,本讲稿共39页向量的坐标变换公式:向量的坐标变换公式:第22页,本讲稿共39页下面讨论点的坐标变换公式。设点M在 和 中的坐标分别为 ,它们分别是向量 在 中的坐标和向量 在 中的坐标。由公式得 在 中的坐标为 第23页,本讲稿共39页由于 ,如果设点 在 中的坐标为 ,则这就是点的坐标变换公式的矩阵形式。点的坐标变换公式的一般形式为第24页,本讲稿共39页曲面的方程的变换公式。设S是一张曲面,它在 中的一般方程为求它在 中的一般方
6、程。对于点M,如果它在 中的坐标为 ,则在 中的坐标为 第25页,本讲稿共39页因此点M在S上充要条件为:把上式左端的函数式记作 则 是S在 中的一般方程,称它为由S在 中的方程 经过坐标变换化为S在 中的方程。第26页,本讲稿共39页第27页,本讲稿共39页过渡矩阵的性质过渡矩阵的性质因为 中的坐标向量 是不共面的,所以过渡矩阵的行列式 ,即 是满秩矩阵。命题命题 设有三个仿射坐标系 。到 的过渡矩阵为 ,到 的过渡矩阵为 ,则 到 的过渡矩阵为第28页,本讲稿共39页直角坐标变换的过渡矩阵,正交矩阵直角坐标变换的过渡矩阵,正交矩阵设 和 是空间中的两个直角坐标系,到 的过渡矩阵为因为 是直
7、角坐标系,C的各个列向量依次是在 中的坐标,所以它们之间的内积为第29页,本讲稿共39页又 是直角坐标系,所以于是第30页,本讲稿共39页实方矩阵 ,满足 ,则称 为正交矩阵。命题命题 两个直角坐标系之间的过渡矩阵是正交矩阵。两个直角坐标系之间的过渡矩阵是正交矩阵。第31页,本讲稿共39页第32页,本讲稿共39页第33页,本讲稿共39页对于平面上两个直角坐标系,它们的过渡矩阵是正交矩阵。则它是二阶正交矩阵,设为则第34页,本讲稿共39页于是于是二阶正交矩阵只有下面两种形式:平面直角坐标变换公式一个是旋转,一个是旋转加反射.第35页,本讲稿共39页现考虑在一个右手直角坐标系中,一个二次方程做法是通过转轴和移轴,寻找一个新的右手直角坐标系,使得方程最简,从而看出其几何形状。下面用转轴消去交叉项。第36页,本讲稿共39页新方程的二次项部分由原方程的二次项部分得 第37页,本讲稿共39页于是,要使得新坐标系的方程不出现交叉项,只需取 满足 例 化方程 为标准二次方程。第38页,本讲稿共39页作业作业P1344,5,P1357,10.第39页,本讲稿共39页
限制150内