必修二111空间几何体的结构(1).ppt
《必修二111空间几何体的结构(1).ppt》由会员分享,可在线阅读,更多相关《必修二111空间几何体的结构(1).ppt(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、经典的建筑给人以美的享受,你想知道其中的奥秘吗?经典的建筑给人以美的享受,你想知道其中的奥秘吗?巴黎罗浮宫拿破仑广场的透明金字塔巴黎罗浮宫拿破仑广场的透明金字塔 一个一个数数字的世界,我时时需要你字的世界,我时时需要你一个一个形形的世界,我处处离不开你的世界,我处处离不开你一个一个美美丽的世界,我欣赏你的韵律丽的世界,我欣赏你的韵律一个一个理理想的世界,我探索你的奥秘想的世界,我探索你的奥秘几何学的简洁美却又正是几何学之所以完美的核心所在几何学的简洁美却又正是几何学之所以完美的核心所在 牛顿牛顿问题问题1 1:观察下面的图片观察下面的图片,这些图片中的物体这些图片中的物体具有怎样的形状具有怎样
2、的形状?我们如何描述它们的形状我们如何描述它们的形状?如果我们只考虑物体的如果我们只考虑物体的形状形状和和大小大小,而不考,而不考虑其它因素,那么由这些物体抽象出来的空虑其它因素,那么由这些物体抽象出来的空间图形就叫做间图形就叫做空间几何体空间几何体。问题问题2:观察上述空间几何体,构成这些空间几何观察上述空间几何体,构成这些空间几何 体的体的面面有什么特点?有什么特点?多面体多面体旋转体旋转体问题问题3:如何定义多面体与旋转体呢:如何定义多面体与旋转体呢?一般地,我们把由若干个平面多一般地,我们把由若干个平面多边形围成的几何体叫做边形围成的几何体叫做多面体多面体。围成多面体的各个多边形叫做多
3、面围成多面体的各个多边形叫做多面体的体的面面,棱顶点ABCD面 棱与棱的公共点叫做棱与棱的公共点叫做多面体的多面体的顶点顶点,定义定义 相邻两个面的公共边叫做多相邻两个面的公共边叫做多面体的面体的棱棱,我们把由一个平面图形绕它所我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成在平面内的一条定直线旋转所形成的封闭几何体叫做的封闭几何体叫做旋转体旋转体.这条定直线叫做旋转体的这条定直线叫做旋转体的轴轴.轴ABO多面体多面体棱棱柱柱棱棱锥锥棱台棱台旋转体旋转体圆柱圆柱圆锥圆锥圆台圆台球一一、棱柱的结构特征棱柱的结构特征:观察下列几何体并观察下列几何体并思考:具备哪些性质的几何体叫做棱柱思考:
4、具备哪些性质的几何体叫做棱柱?ABCDA1A1B1B1C1C1D1ABCA1B1C1D1 E1ABCED 1、定义、定义:有两个面互相平行,其余各面都是有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做相平行,由这些面所围成的几何体叫做棱柱棱柱。底面底面侧面侧面侧棱侧棱顶点顶点有两个面互相平行,有两个面互相平行,其余各面都是平行四其余各面都是平行四边形的几何体是棱柱边形的几何体是棱柱.命题是否正确,命题是否正确,为什么?为什么?思考:思考:定义定义:有两个面互相平行,其余各面都是四边有两个面互相平行,
5、其余各面都是四边形,并且每相邻两个四边形的公共边都互相平形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做行,由这些面所围成的几何体叫做棱柱棱柱。三棱柱三棱柱四棱柱四棱柱五棱柱五棱柱u 侧棱不垂直于底的棱柱叫做侧棱不垂直于底的棱柱叫做斜棱柱斜棱柱。u侧棱垂直于底的棱柱叫做侧棱垂直于底的棱柱叫做直棱柱直棱柱。u底面是正多边形的直棱柱叫做底面是正多边形的直棱柱叫做正棱柱正棱柱。2、棱柱的分类:、棱柱的分类:棱柱的底面可以是三角形、棱柱的底面可以是三角形、四边形、五边形、四边形、五边形、我们把这样的棱柱分我们把这样的棱柱分别叫做别叫做三棱柱、四棱柱、五棱柱、三棱柱、四棱柱、五棱柱
6、、3、棱柱的表示法、棱柱的表示法(下图下图)用平行的两底面多边形的字母表示棱用平行的两底面多边形的字母表示棱柱柱,如:棱柱如:棱柱ABCDE-A1B1C1D1E1。课堂练习课堂练习:1.下面的几何体中,哪些是棱柱?下面的几何体中,哪些是棱柱?二、棱锥的结构特征二、棱锥的结构特征观察下列几何体观察下列几何体,有什么相同点?有什么相同点?1、棱锥的概念、棱锥的概念 有一个面是多边形,其余各面是有一个有一个面是多边形,其余各面是有一个公共顶点的三角形,公共顶点的三角形,由这些面所围成的几由这些面所围成的几何体叫做棱锥。何体叫做棱锥。棱锥的底面棱锥的底面棱锥的侧面棱锥的侧面棱锥的顶点棱锥的顶点棱锥的侧
7、棱棱锥的侧棱SABCDE下列命题是否正确?下列命题是否正确?有一个面是多边形,其余各面都是三角有一个面是多边形,其余各面都是三角形的立体图形一定是棱锥形的立体图形一定是棱锥.思考思考明矾晶体明矾晶体2、棱锥的分类棱锥的分类:按底面多边形的边数,可以分为三棱锥、按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、四棱锥、五棱锥、ABCDS3、棱锥的表示方法:棱锥的表示方法:用表示顶点和底面的字用表示顶点和底面的字母表示,如四棱锥母表示,如四棱锥S-ABCD。特殊的棱锥:特殊的棱锥:斜高斜高1.1.正棱锥:底面是正多边形,顶点在底正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥。
8、面的射影是底面正多边形的中心的棱锥。ASBCDO2.2.正四面体:所有面都是正三角形的三正四面体:所有面都是正三角形的三棱锥。棱锥。三、棱台的结构特征三、棱台的结构特征B B1 1A A1 1C C1 1D D1 1C C1 1 B B1 1A A1 1D D1 11、棱台的概念:、棱台的概念:用一个平行于棱锥底面用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分的平面去截棱锥,底面和截面之间的部分叫做棱台。叫做棱台。C C1 1 B B1 1A A1 1D D1 1上底面上底面下底面下底面侧面侧面侧棱侧棱顶点顶点2 2、由三棱锥、四棱锥、五棱锥、由三棱锥、四棱锥、五棱锥截得的棱台,截得
9、的棱台,分别叫做分别叫做三棱台,四棱台,五棱台三棱台,四棱台,五棱台3、棱台的表示法:棱台用表示上、下底面各顶棱台的表示法:棱台用表示上、下底面各顶点的字母来表示,如右图,点的字母来表示,如右图,棱台棱台ABCD-AABCD-A1 1B B1 1C C1 1D D1 1 。C C1 1 B B1 1A A1 1D D1 14、用正棱锥截得的棱台叫作、用正棱锥截得的棱台叫作正棱台正棱台。判断判断:下列几何体是不是棱台下列几何体是不是棱台,为什么为什么?(1)(2)辨析辨析棱柱、棱锥、棱台的结构特征比较棱柱、棱锥、棱台的结构特征比较结构特征结构特征棱柱棱柱棱锥棱锥棱台棱台定义定义底面底面侧面侧面侧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 111 空间 几何体 结构
限制150内