几种特殊类型行列式及其计算(共12页).doc
《几种特殊类型行列式及其计算(共12页).doc》由会员分享,可在线阅读,更多相关《几种特殊类型行列式及其计算(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1 行列式的定义及性质1.1 定义 级行列式等于所有取自不同行不同列的个元素的乘积的代数和,这里是的一个排列,每一项都按下列规则带有符号:当是偶排列时,带正号,当是奇排列时,带有负号.这一定义可写成这里 表示对所有级排列求和.1.2 性质 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的
2、值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.2 行列式的分类及其计算方法2.1 箭形(爪形)行列式 这类行列式的特征是除了第行(列)或第行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零.例1 计算阶行列式. 解 将第一列减去第二列的倍,第三列的倍第n列的倍,得 .2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是,
3、对角线下方的元素都是的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当时可以化为上面列举的爪形来计算,当时则用拆行(列)法来计算.例2 计算行列式.解 当时.将第行到第行都减去第行,则化为以上所述的爪形,即.用上述特征的方法,则有 .当时,用拆行(列)法,则.化简得 . 而若一开始将拆为,则得 . 由,得. 有一些行列式虽然不是两三角型的行列式,但是可以通过适当变换转化成两三角型行列式进行计算.例3 计算行列式.解 将第一行,第一列,得.即化为上情形,计算得.而对于一些每行(列)上有公共因子但不能像上面一样在保持行列式不变的基础上提出公共因子的,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊 类型 行列式 及其 计算 12
限制150内