初中函数综合试题(共38页).doc
《初中函数综合试题(共38页).doc》由会员分享,可在线阅读,更多相关《初中函数综合试题(共38页).doc(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数与其他函数的综合测试题一、 选择题:(每小题3分,共45分)1已知h关于t的函数关系式为,(g为正常数,t为时间),则函数图象为( ) (A) (B) (C) (D)2在地表以下不太深的地方,温度y()与所处的深度x(km)之间的关系可以近似用关系式y35x20表示,这个关系式符合的数学模型是( )(A)正比例函数 (B)反比例函数(C)二次函数 (D)一次函数3若正比例函数y(12m)x的图像经过点A(,)和点B(,),当时,则m的取值范围是( )(A)m0 (B)m0 (C)m (D)m 4函数y = kx + 1与函数在同一坐标系中的大致图象是()(A)
2、(B)(C)(D)5下列各图是在同一直角坐标系内,二次函数与一次函数yaxc的大致图像,有且只有一个是正确的,正确的是( ) (A) (B) (C) (D)6抛物线的顶点坐标是()A(1,1)B(1,1)C(1,1)D(1,1)7函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是() A ab0, c0 B ab0 C ab0, c0 D ab0, c08已知a,b,c均为正数,且k=,在下列四个点中,正比例函数 的图像一定经过的点的坐标是( ) A(l,) B(l,2) C(l,) D(1,1)9如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,
3、过P作EFAC,与平行四边形的两条边分别交于点E,F设BP=x,EF=y,则能反映y与x之间关系的图象为( )10如图4,函数图象、的表达式应为()(A),(B), ,(C),(D),11张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( )12二次函数y=x2-2x+2有 ( )A 最大值是1 B最大值是2 C最小值是1 D最小值是213设A(x1,y1)、B(x2,y2)是反比例函数y=图象上的两点,若x1x20,则y1与y2之间的关系是( )A y2 y10 B y1 y2 y10 D
4、y1 y2014若抛物线y=x2-6x+c的顶点在x轴上,则c的值是 ( )A 9 B 3 C-9 D 0x第3题图yPDO15二次函数的图象与轴交点的个数是()A0个B1个C2个D不能确定二、 填空题:(每小题3分,共30分)1完成下列配方过程: ;2写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_3如图,点P是反比例函数上的一点,PD轴于点D,则POD的面积为 ;4、已知实数m满足,当m=_时,函数的图象与x轴无交点5二次函数有最小值,则m_;6抛物线向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为_;7某商场销售一批名牌衬衫,平均每天可售出20件,每件可 盈利40
5、元为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件若商场平均每天要赢利1200元,则每件衬衫应降价_;8某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A(0,2),铅球路线最高处为B(6,5),则该学生将铅球推出的距离是_;9二次函数的图像与x轴交点横坐标为2,b,图像与y轴交点到圆点距离为3,则该二次函数的解析式为_;10如图,直线与双曲线在第一象限内的交点R,与x轴、y轴的交点分别为P、Q过R作RMx轴,M为垂足,若OPQ与PRM的面积相等,则k的值等于 三、 解答题:(13题,每题7分,计21分
6、;46题每题8分,计24分;本题共45分)1已知二次函数的图像经过A(0,1),B(2,1)两点(1)求b和c的值;(2)试判断点P(1,2)是否在此函数图像上?2已知一次函数的图象与反比例函数的图象交于点P(4,n)(1)求n的值(2)求一次函数的解析式3看图,解答下列问题(1)求经过A、B、C三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴; (3)用平滑曲线连结各点,画出该函数图象4已知函数y=x2+bx-1的图象经过点(3,2)(1) 求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x0时,求使y2的x的取值范围5某工厂设门市部专卖某产品,该产品每
7、件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)506070758085每天售出件数30024018015012090假设当天定的售价是不变的,且每天销售情况均服从这种规律(1)观察这些统计数据,找出每天售出件数与每件售价(元)之间的函数关系,并写出该函数关系式(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6如图,一单杠高2.2米,两立
8、柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状(1) (2)(1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行求这时木板到地面的距离(供选用数据:1.8,1.9,2.1)7已知抛物线yx2mxm2 ()若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB,试求m 的值;()设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 MNC的面积等于27,试求m的值参考答
9、案:一、 选择题: 1A 2D 3D 4B 5D 6A 7D 8A 9A 10C 11D 12C 13C 14A 15C二、填空题:1, 2 y= 3 1 42或1 5 6 710元或20元 86 9 或 10 三、解答题:12解:(1)由题意得:, (2)由点P(4,2)在上, 一次函数的解析式为3解:(1)由图可知A(1,1),B(0,2),C(1,1)设所求抛物线的解析式为yax2bxc依题意,得解得 y2x2x2(2)y2x2x22(x)2顶点坐标为(,),对称轴为x(3)图象略,画出正确图象4解:(1)函数y=x2+bx-1的图象经过点(3,2)9+3b-1=2,解得b=-2 函数解
10、析式为y=x2-2x-1 (2)y=x2-2x-1=(x-1)2-2 ,图象略, 图象的顶点坐标为(1,-2) (3)当x=3 时,y=2, 根据图象知,当x3时,y2当x0时,使y2的x的取值范围是x3 5解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数与每件售价之间的函数关系为: (2)当时, , 解得:;设门市部每天纯利润为 当时, 当时, 当时, 时,随的增大而减少时, 时,纯利润最大为5296元6(1)(2)解:(1)如图,建立直角坐标系, 设二次函数解析式为yax2c D(0.4,0.7),B(0.8,2.2), 绳子最低点到地面的距离为0.2米(2)分别作EGAB于
11、G,FHAB于H,AG(ABEF)(1.60.4)0.6在RtAGE中,AE2,EG1.92.21.90.3(米)木板到地面的距离约为0.3米7解: (I)设点(x1,0),B(x2,0) , 则x1 ,x2是方程 x2mxm20的两根x1 x2 m ,x1x2 =m2 0 即m2; 又ABx1 x2,m24m3=0 解得:m=1或m=3(舍去) ,m的值为1 (II)设M(a,b),则N(a,b) M、N是抛物线上的两点,MNCxyO得:2a22m40 a2m2 当m2时,才存在满足条件中的两点M、N 这时M、N到y轴的距离均为, 又点C坐标为(0,2m),而SM N C = 27 ,2(2
12、m)=27 解得m=7 。中考试题分类汇编-函数综合题1. 如图,已知点A(tan,0),B(tan,0)在x轴正半轴上,点A在点B的左边,、 是以线段AB为 斜边、顶点C在x轴上方的RtABC的两个锐角(1)若二次函数yx2kx(22kk2)的图象经过A、B两点,求它的解析式;(2)点C在(1)中求出的二次函数的图象上吗?请说明理由解:(1),是RtABC的两个锐角,tantan1tan0,tan0 由题知tan,tan是方程x2kx(22kk2)0的两个根,tanxtan(22kk2)k22k2,k22k21解得,k3或k1 而tantank0,k0k3应舍去,k1故所求二次函数的解析式为
13、yx2x1 (2)不在 过C作CDAB于D令y0,得x2x10,解得x1,x22A(,0),B(2,0),AB tan,tan2设CDm则有CDADtanADAD2CD又CDBDtan2BD,BDCD2mmmADC(,) 当x时,y点C不在(1)中求出的二次函数的图象上AMyxNQO2已知抛物线经过点(1)求抛物线的解析式(2)设抛物线顶点为,与轴交点为求的值(3)设抛物线与轴的另一个交点为,求四边形的面积解:(1)解方程组得, (2)顶点 (3)在中,令得,令得或, 四边形(面积单位)3如图9,抛物线y=ax2+8ax+12a与轴交于A、B两点(点A在点B的左侧),抛物线上另有一点在第一象限
14、,满足 ACB为直角,且恰使OCAOBC.(1) 求线段OC的长.(2) 求该抛物线的函数关系式(3) 在轴上是否存在点P,使BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由. 解:(1);(2);(3)4个点:4已知函数y=和y=kx+l(kO) (1)若这两个函数的图象都经过点(1,a),求a和k的值; (2)当k取何值时,这两个函数的图象总有公共点?解;(1) 两函数的图象都经过点(1,a), (2)将y代人y=kx+l,消去y得kx2+x一2=0 kO,要使得两函数的图象总有公共点,只要0即可 18k, 1+8k0,解得k一 k一且k05已知如图,矩形OA
15、BC的长OA=,宽OC=1,将AOC沿AC翻折得APC。(1)填空:PCB=_度,P点坐标为( , );(2)若P,A两点在抛物线y= x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.(1)30,(,);(2)点P(,),A(,0)在抛物线上,故 - +b +c=,-3+b +c=0, b=,c=1. 抛物线的解析式为y=-x2+x+1,C点坐标为(0,1). -02+0+1=1, 点C在此抛物上.6.如图,二资助函数的图象经过
16、点M(1,2)、N(1,6).(1)求二次函数的关系式.(2)把RtABC放在坐标系内,其中CAB = 90,点A、B的坐标分别为(1,0)、(4,0),BC = 5。将ABC沿x轴向右平移,当点C落在抛物线上时,求ABC平移的距离.解:(1)M(1,2),N(1,6)在二次函数y = x2+bx+c的图象上, 解得二次函数的关系式为y = x24x+1. (2)RtABC中,AB = 3,BC = 5,AC = 4, 解得 A(1,0),点C落在抛物线上时,ABC向右平移个单位.7.如图,在平面直角坐标系中,两个函数的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 函数 综合 试题 38
限制150内