计量经济分析(第六版)答案 Answers6.docx
《计量经济分析(第六版)答案 Answers6.docx》由会员分享,可在线阅读,更多相关《计量经济分析(第六版)答案 Answers6.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、NYU 中STERNDepartment of EconomicsNEW YORK UNIVERSITY LEONARD N. STERN SCHOOL OF BUSINESSECONOMETRICS IFall 2007, TR, l:00- 2:20Professor William Greene Phone: 212.998.0876Office: KMC 7-78Home page:ww.stern.nyu.edu/wgreeneEmail: wgreenestern.nyu.eduURL for course web page:www.stern.nyu.edu/wgreene/Ec
2、onometrics/Econometrics.htmAssignment 6Asymptotics for Least Squares and the Classical Regression Model1. This exercise is based on the Airlines Data used in a few examples in your text. The model in this problem set islogc 二 a + piogq + y(log2q/2) + 8ilog(pf) + 521f + 53t + e.(See Table F7.1 on pag
3、e 949. The data are on the website for the text.) Linear regression of log(cost) = 1c on a constant (one), log(output) = Iq, one half the square of Iq = .5*lq2 = lq2, the log of the fuel price, Ipf, and the load factor, If, and a time trend, t, produce the following results (on the next page). Note
4、that there are three sets of results shown.a. Test the hypothesis that both the load factor and time trend coefficients are zero using an F test. Note that this requires values from both regressions below. Now, using only the first set of results, use a Wald (chi-squared) statistic, test the same hy
5、pothesis. Explain the difference in the two tests. What is the result of the test?F 二(1.577479-1.149658)/2) / 1.149658/(90-6) = 15.63. Large. Reject hypothesis.The Wald statistic is computed below. For the linear model, Wald = 2*F. In general, the chi- squared is the limiting statistic when the degr
6、ees of freedom grows large.- regr;lhs=lc;rhs=onezIq,lq2,Ipf,If,t$+ -1Ordinaryleast squares regression11Model was estimated Dec 09, 2005 at04:30:11PM|1LHS=LCMean=13.36561|1Standard deviation =1.131971|1WTS=noneNumber of observs.=90|1Model sizeParameters=6|1Degrees of freedom =84|1ResidualsSum of squa
7、res=1.149658|1Standard error of e =.1169889|1FitR-squared=.9899189|1Adjusted R-squared =.9893188|1Model testF 5,84 (prob) =1649.68 (.0000) |1DiagnosticLog likelihood=68.51107|1Restricted(b=0)=-138.3581|1Chi-sq 5 (prob)=413.74 (.0000) |1Info criter.LogAmemiya Prd. Crt.=-4.226814|1Akaike Info. Criter.
8、=-4.227012|1AutocorrelDurbin-Watson Stat.=.2169784|1Rho = core,e(-1)=.8915108|+-+4-+4-+I Variable |Coefficient|Standard Error|t-ratio|P|T|t|Mean ofX|+Constant11.3580713.6771772416.773.0000LQ.93040362.0280246533.199.0000-1.17430919LQ2.04602849.021442532.147.03471.34409282LPF.28511398.060163614.739.00
9、0012.7703594LF-1.56214282.32709516-4.776.0000*56046016T.03409548.011270133.025.00338.00000000- matr;r=0,0,0,0,1,0/0,0,0,0,0,1;aq=0/0$- matr;list; m=r*b-aq ; vm = R*varb*r * ; Wald = m* m $Matrix Mhas 2 rows and 1 columns.1+1 |-1.562142 |.03410Matrix VMhas 2 rows and 2 columns.12+1 |.106999202913D-04
10、2| -.9202913D-04.00013Matrix WALD has 1 rows and 1 columns. 1 +1 |31.25883- calc;list;fc=wald/2$ FC =.15629415347651660D+02b. The third set of regression results given corresponds to a modellogc = a + plogq + Silf + 甑 + The estimate of the scale parameter in this model is E = 1/p. Using the third se
11、t of regression results, estimate this quantity and compute an estimate of the asymptotic standard error. What is the asymptotic distribution of this estimator?- Regress;lhs=lc;rhs=one,lqzIf,t$+I OrdinaryI Model wasI LHS=LCleast squares regressionestimated Dec 09, 2005 at 04:34:43PMWTS=noneModel siz
12、eResidualsFitMeanStandard deviation Number of observs. ParametersDegrees of freedom Sum of squares Standard error of e R-squaredAdjusted R-squared13.36561 1.13197190 486 1.515892 .1327654 .9867075 .9862438Model testDiagnosticF 3,86 (prob) =2127.93 (.0000)Info criter.AutocorrelLog likelihood Restrict
13、ed(b=0)Chi-sq 3 (prob)LogAmemiya Prd. Crt. Akaike Info. Criter. Durbin-Watson Stat.Rho = core,e(-1)56.06677-138.3581388.85 (.0000)-3.994858-3.994917.3755908.81220464-4-4-4-I Variable | Coefficient | Standard Error |t-ratio |P|T|t | Mean of X|Constant14.5121911.1970700773.640.0000LQ.86736709.01413009
14、61.384.0000LF-1.42812721.36398158-3.924.0002T.08404797.0040523620.741.0000+-1.17430919.560460168.00000000- - calc; list ;beta = b (2) ; e = 1/beta $BETA= .86736708567543600D+00E= .11529143963553570D+01Calculator: Computed 2 scalar results- - calc; list ; vbeta = varb(2,2) ; dedb = -l/betaA2 $VBETA=
15、.19965951595452470D-03DEDB= -.13292116053234360D+01Calculator: Computed 2 scalar results- - calc; list ; ve = dedbA2 * vbeta ; sde = sqr(ve)$VE= .35275912994487820D-03SDE= . 187818830244 70100D-01The estimate of E is 1.153. The estimated asymptotic standard error is .01878.The asymptotic distributio
16、n would be normal with this mean and standard deviation.c. One common measure of economies of scale in statistical cost analysis is the measureE = l/61ogc/aiogq=-,+ /logqUsing the results from the first equation, estimate E computed at the average value of logq (not the log of the average of q). Com
17、pute the asymptotic standard error for your estimate. Explain your calculations at each step.+1 Ordinaryleast squares regression1I Model wasestimated Dec 09, 2005at 04:45:35PM|I LHS=LCMean=13.36561|1Standard deviation=1.131971|I WTS=noneNumber of observs.=90|I Model sizeParameters=6|1Degrees of free
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量经济分析第六版答案 Answers6 计量 经济 分析 第六 答案
限制150内