初中数学整式的乘法教案3篇 整式的乘法1教案.docx
《初中数学整式的乘法教案3篇 整式的乘法1教案.docx》由会员分享,可在线阅读,更多相关《初中数学整式的乘法教案3篇 整式的乘法1教案.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学整式的乘法教案3篇 整式的乘法1教案下面是我收集的初中数学整式的乘法教案3篇 整式的乘法1教案,供大家参阅。初中数学整式的乘法教案1总体说明:完全平方公式则是对多项式乘法中出现的较为特别的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培育学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、精确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培育学生渐渐养成严密的逻辑推理实力的作用.因此学好完全平方公式对
2、于代数学问的后继学习具有相当重要的意义.本节是北师大版七年级数学下册第一章整式的运算的第8小节,占两个课时,这是第一课时,它主要让学生经验探究与推导完全平方公式的过程,培育学生的符号感与推理实力,让学生进一步体会数形结合的思想在数学中的作用.一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础学问的学习为本节课的学习奠定了基础.学生活动阅历基础:在平方差公式一节的学习中,学生已经经验了探究和应用的过程,获得了一些数学活动的阅历,培育了肯定的符号感和推理实力;同时在相关学问的学习过程中,学生经验了许多探究学习的
3、过程,具有了肯定的独立探究意识以及与同伴合作沟通的实力.二、教学目标学问与技能:(1)让学生会推导完全平方公式,并能进行简洁的应用.(2)了解完全平方公式的几何背景.数学实力:(1)由学生经验探究完全平方公式的过程,进一步发展学生的符号感与推理实力.(2)发展学生的数形结合的数学思想.情感与看法:将学生头脑中的前概念暴露出来进行分析,避开形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消退学生头脑中的前概念,避开形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题验
4、证推广到一般状况,形成公式数形结合进一步拓广总结口诀公式应用学生反馈学生PK学生反思巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:(a+2)2=a2+22(a+2)2=a2+2a+22正确做法;针对这几种结果都将a=1代入计算,得出都是错误的,但的做法是否肯定正确呢?怎么验证?活动目的:在许多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,假如不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分相识到自己原有的定式思维是错误的,为下一步构建新的思
5、维模式埋下伏笔.其次环节:验证(a+2)2=a24a+22活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避开形成“相异构想”.第三环节:推广到一般状况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活动目的:让学生经验从特别到一般的探究过程,体验到发觉的欢乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,许多公式都都可以用几何图形进行说明,那么完全平方公式怎样用几何图形说明呢?展示动画,用几何图形诠释完全平方公式的几何意义.学生思
6、索:还有没有其它的方法来诠释完全平方公式?(课后思索)活动目的:让学生进一步相识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(ab)2=a22ab+b2方法1:(ab)2=(ab)(ab)=a2abab+b2=a22ab+b2方法2:(ab)2=a+(b)2=a2+2a(b)+(b)2=a22ab+b2活动目的:让学生经验由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由其次种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口
7、诀、相识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2特征:左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;公式中的a、b可以是随意一个代数式(数、字母、单项式、多项式)口诀:首平方,尾平方,首尾相乘的两倍在中心.活动目的:相识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避开学生在应用该公式中出现错误.第七环节:公式应用活动内容:例:计算:(2x3)2;(4x+)2解:(2x3)2=(2
8、x)22?(2x)?3+32=4x212x+9(4x+)2=(4x)2+2?(4x)()+()2=16x2+2xy+活动目的:在前几个环节中,学生对完全平方公式已经有了感性相识,通过本环节的讲解以及下一环节的练习,使学生逐步经验相识仿照再相识.从而上升到理性相识的阶段.第八环节:随堂练习活动内容:计算:;(n+1)2n2活动目的:通过学生的反馈练习,使老师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便老师能刚好地进行查缺补漏.第九环节:学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的精确性率高,速度快.活动目的:活跃课堂气氛,激起
9、学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.第十环节:学生反思活动内容:通过今日这堂课的学习,你有哪些收获?收获1:相识了完全平方公式,并能简洁应用;收获2:了解了两数和与两数差的完全平方公式之间的差异;收获3:感受到数形结合的数学思想在数学中的作用.活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的相识,体会数学思想的精妙.第十一环节:布置作业:课本P43习题1.13初中数学整式的乘法教案2课题名称:完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为动身点,依据数学课程标准,引导学
10、生体会、参加科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发觉问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与沟通等活动,获得学问、技能、方法、看法特殊是创新精神和实践实力等方面的发展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习看法和方法。二、学习者分析:1、在学习本课之前应具备的基本学问和技能:同类项的定义。合并同类项法则多项式乘以多项式法则。2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学整式的乘法教案3篇 整式的乘法1教案 初中 数学 整式 乘法 教案
限制150内