曲面及空间曲线.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《曲面及空间曲线.ppt》由会员分享,可在线阅读,更多相关《曲面及空间曲线.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5 曲面与空间曲线例1:求与A(2,3,1)和B(4,5,6)等距离的点的运动规迹。解:设M(x,y,z)为动点的坐标,动点应满足的条件是|AM|=|BM|由距离公式得一.曲面及其方程:1.曲面方程的一般概念:而满足此方程的点都在曲面上,则称此方程为该曲面的方程,而曲面称为此方程的图形。定义:若曲面上的点的坐标(x,y,z)都满足方程F(x,y,z)=0,整理得 此即所求点的规迹方程,为一平面方程。2.坐标面及与坐标面平行的平面方程:坐标平面xOy的方程:z=0 过点(a,b,c)且与xOy面平行的平面方程:z=c 坐标面yOz、坐标面zOx以及过(a,b,c)点且分别与之平行的平面方程:x=
2、0;y=0;x=a;y=b 3.球面方程:球面的标准方程:以M0(x0,y0,z0)为球心,R为半径 的球面方程为 (x-x0)2+(y-y0)2+(z-z0)2=R2例例2:求x2+y2+z2+2x-2y-2=0表示的曲面解解:整理得:(x+1)2+(y-1)2+z2=22 故此为一个球心在(-1,1,0),半径为2的球。球面方程的特点:平方项系数相同;没有交叉项。球面的一般方程:x2+y2+z2+Ax+By+Cz+D=0 一般我们将动直线l沿定曲线c平行移动所形成的轨迹称为柱面。其中直线l称为柱面的母线,定曲线c称为柱面的准线。本章中我们只研究母线平行于坐标轴的柱面方程。此时有以下结论:分
3、析:母线平行于坐标轴的柱面的特点为:平行于某轴,则在其方程中无此坐标项。其几何意义为:无论z取何值,只要满足F(x,y)=0,则总在柱面上。若柱面的母线平行于z轴,准线c是xOy面上的一条曲线,其方程为F(x,y)=0,则该柱面的方程为F(x,y)=0;同理,G(x,z)=0,H(y,z)=0在空间中分别表示母线平行于y轴和x轴的柱面。4.母线平行于坐标轴的柱面方程:圆柱面;椭圆柱面;双曲柱面;抛物柱面。以上所举例均为母线平行于z轴的情况,其他情况类似。几种常见柱面:x+y=a 平面;4.旋转曲面:一般情况下我们将一平面曲线c绕同一平面内的定直线l旋转一周所成的曲面称为旋转曲面。其中c称为母线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲面 空间 曲线
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内