垂直平分线与角平分线典型题(共7页).doc
《垂直平分线与角平分线典型题(共7页).doc》由会员分享,可在线阅读,更多相关《垂直平分线与角平分线典型题(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且ADBD,若点C在直线m上,则ACBC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.课堂笔记:2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且ADBD,若ACBC,则点C在直线m上.定理的作用:证明一个点在某线段
2、的垂直平分线上.课堂笔记:3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线分别是ABC三边AB、BC、CA的垂直平分线,则直线相交于一点O,且OAOBOC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该
3、三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在ABC中,BC8cm,AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长等于()A6cm B8cmC10cm D12cmB针对性练习:AD已知:1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点 E,如果EBC的周长是24cm,那么BC= 2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么EBC的周长是 E3) 如图,A
4、B=AC,AB的垂直平分线交AB于点D,交AC于点E,如果A=28 度,那么EBC是 CB A例2. 已知: AB=AC,DB=DC,E是AD上一点,求证:BE=CE。E课堂笔记:DCBOBACNB针对性练习:已知:在ABC中,ON是AB的垂直平分线,OA=OC,求证:点O在BC的垂直平分线. C例3. 在ABC中,AB=AC,AB的垂直平分线与边AC所在的直线相交所成锐角为50,ABC的底角B的大小为_。课堂笔记:B针对性练习:1. 在ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40,则底角B的大小为_。例4、如图8,已知AD是ABC的BC边上的高,且C2B,求证:B
5、DACCD.证明:在BD上取一点E,使DEDC,连接AE,课堂笔记:课堂练习:1.如图,AC=AD,BC=BD,则( ) A.CD垂直平分AD B.AB垂直平分CD C.CD平分ACB D.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是( )A.直角三角形B.锐角三角形 C.钝角三角形 D.等边三角形3.下列命题中正确的命题有( )线段垂直平分线上任一点到线段两端距离相等;线段上任一点到垂直平分线两端距离相等;经过线段中点的直线只有一条;点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;过线段上任一点可以作这条线段的中垂线.A.1个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 垂直平分线 平分线 典型
限制150内