实验三-决策树算法实验实验报告(共13页).doc
《实验三-决策树算法实验实验报告(共13页).doc》由会员分享,可在线阅读,更多相关《实验三-决策树算法实验实验报告(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实验三 决策树算法实验一、实验目的: 熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法 和实现技术。二、实验原理: 决策树学习和分类. 三、实验条件:四、实验内容:1 根据现实生活中的原型自己创建一个简单的决策树。2 要求用这个决策树能解决实际分类决策问题。五、实验步骤:1、验证性实验:(1)算法伪代码 算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集data; 候选属性集合AttributeName。 输出一棵决策树。 (1) 创建节点N; (2) If samples 都在同一类C中then (3)
2、 返回N作为叶节点,以类C标记; (4) If attribute_list为空then (5) 返回N作为叶节点,以samples 中最普遍的类标记;/多数表决 (6) 选择attribute_list 中具有最高信息增益的属性test_attribute; (7) 以test_attribute 标记节点N; (8) For each test_attribute 的已知值v /划分 samples ;(9) 由节点N分出一个对应test_attribute=v的分支; (10令Sv为 samples中 test_attribute=v 的样本集合;/一个划分块 (11)If Sv为空 t
3、hen (12)加上一个叶节点,以samples中最普遍的类标记; (13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点值。(2)实验数据预处理Age:30岁以下标记为“1”;30岁以上50岁以下标记为“2”;50岁以上标记为“3”。Sex:FEMAL-“1”;MALE-“2”Region:INNERCITY-“1”;TOWN-“2”;RURAL-“3”;SUBURBAN-“4”Income:50002万-“1”;2万4万-“2”;4万以上-“3”MarriedChildrenCarMortgagePep:以上五个条
4、件,若为“是”标记为“1”,若为“否”标记为“2”。Age sex region income married children car mortgage pep 1 2 1 1 2 1 1 2 21 2 1 1 2 2 2 2 12 1 4 1 2 1 2 2 1 2 1 1 1 1 2 2 2 21 2 1 1 1 2 2 2 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 2 1 1 1 2 1 1 2 1 2 1 3 1 2 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1
5、 2 1 2 2 1 2 1 1 1 2 1 2 2 2 1 3 2 1 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 3 2 2 2 1 2 1 3 1 2 2 1 2 2 2 1 3 2 3 3 1 1 1 2 1 3 2 2 3 1 2 1 1 2 3 1 3 3 1 1 2 2 1 3 2 1 3 1 2 1 2 2 3 2 1 3 1 1 1 1 1 3 1 1 3 1 2 1 1 2 3 1 3 3 1 2 2 2 2 3 2 4 3 1 2 2 1 1 3 1 3 3 2 2 1 1 2(3)Matlab语句:Tree RulesMatrix= Decisi
6、onTree(DataSet, AttributName);六、实验结果:实验程序:function Tree RulesMatrix=DecisionTree(DataSet,AttributName)%输入为训练集,为离散后的数字,如记录1:1 1 3 2 1;%前面为属性列,最后一列为类标if nargin1 error(请输入数据集);else if isstr(DataSet) DataSet AttributValue=readdata2(DataSet); else AttributValue=; endendif narginmostlabelnum) mostlabelnum
7、=length(ValRecords(i).matrix); mostlabel=i; end end Tree.Attribut=mostlabel; Tree.Child=; return; end for i=1:length(Attributs) Sa(i) ValRecord=ComputEntropy(DataSet,i); Gains(i)=S-Sa(i); AtrributMatric(i).val=ValRecord; end maxval maxindex=max(Gains); Tree.Attribut=Attributs(maxindex); Attributs2=A
8、ttributs(1:maxindex-1) Attributs(maxindex+1:length(Attributs); for j=1:length(AtrributMatric(maxindex).val) DataSet2=DataSet(AtrributMatric(maxindex).val(j).matrix,1:maxindex-1) DataSet(AtrributMatric(maxindex).val(j).matrix,maxindex+1:size(DataSet,2); if(size(DataSet2,1)=0) mostlabelnum=0; mostlabe
9、l=0; for i=1:length(ValRecords) if(length(ValRecords(i).matrix)mostlabelnum) mostlabelnum=length(ValRecords(i).matrix); mostlabel=i; end end Tree.Child(j).root.Attribut=mostlabel; Tree.Child(j).root.Child=; else Tree.Child(j).root=CreatTree(DataSet2,Attributs2); end end endfunction Entropy RecordVal
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 决策树 算法 报告 13
限制150内