高级微观经济学最优化优秀课件.ppt
《高级微观经济学最优化优秀课件.ppt》由会员分享,可在线阅读,更多相关《高级微观经济学最优化优秀课件.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高级微观经济学课件最优化第1页,本讲稿共53页A2.1微积分第2页,本讲稿共53页n设D是一个非退化的实值区间在此区间上,f是二次可微的.如下的1至3阐述是等价的:n1.f是凹的.n2.f(x)0,xD.n3.对于一切x0D,nf(x)f(x0)+f(x0)(x-x0)n4.如果f(x)0 (P.1)xixftkxtkfxtxitxfxixitxtxftxfxiii=)()()()()(P.3)2022/11/3022第22页,本讲稿共53页由于(P.1)是恒等式,(P.2)必定会等于(P.3),因此有:用t除两边得到:对于i=1,n,并且t0,证明完毕.2022/11/3023第23页,本讲
2、稿共53页定理A2.7 欧拉定理欧拉定理证明:定义t的函数是十分有用的,g(t)f(tx),固定x,对t微分,有xxxixfxkfkxfnii对所有次齐次性的:是,当且仅当如下式子成立,)()()(1=(p.2)在t=1时:(p.3)2022/11/3024第24页,本讲稿共53页证明必要性设f(x)是k次齐次,使得对一切t0与任何x,f(tx)=tkf(x),由于(P.1),我们有g(t)=tkf(x),求微分,g(t)=ktk-1f(x),并且在t=1处取值.我们得到g(1)=kf(x).利用(P.3),得到(P.4)证明充分性为证明充分性,设(P.4)成立,在tx处取值得到:(P.5)给
3、(P.2)式两边同乘t,同(P.5)相比较,发现tg(t)=kg(t)(P.6)2022/11/3025第25页,本讲稿共53页考虑函数t-kg(t).如果对此求关于t的微分,得到:从(p.6)来看,它的导数必为零,因此,我们可以得出这样结论,即对于一些常数c,t-kg(t)=c.为找到c,在t=1处求值并注意到g(1)=c.利用定义(P.1),得到c=f(x).我们知道,g(t)=tkf(x).再次把(P.1)代入,我们得到,对于所有x,则有f(tx)=tkf(x).2022/11/3026第26页,本讲稿共53页A2.2 最优化第27页,本讲稿共53页设f(x)是一个二次可微的单变量函数,
4、那么f(x)将会获得一个局部内点最优值.1.在 x*处有最大值f(x)=0(FONC)f(x)0(SONC)2.在 x*处有最小值f(x)=0(FONC)f(x)0(SONC)定理A2.8 单变量情形中局部内点最优化的必要条件2022/11/3028第28页,本讲稿共53页定理2.9 实值函数局部内点最优化的一阶必要条件n如果可微函数f(x)在点x*处达到了一个局部内点极大值或极小值,那么,x*为如下联立方程组的解:2022/11/3029第29页,本讲稿共53页证明:n证明思路:我们设f(x)在x*处获得了一个局部内部极值,并设法证明f(x*)=0.证明:选择任意向量zRn,那么,对于任意标
5、量t,我们有:g(t)=f(x*+tz)(P.1)从(P.1)我们知道,g(t)不过是f(x)的另一种表现形式.t0时,x*+tz正好是不同于x*的向量,故g(t)正好同f的一些值相同.t=0,x*+tz等于x*,因此,g(0)正好是f在x*处的值.已经假设 f在x*处取得极值,那么g(t)必定在t=0处获得一个局部极值.那么,g(0)=02022/11/3030第30页,本讲稿共53页2022/11/3031第31页,本讲稿共53页A2.2.2 二阶条件n实值函数局部内点最优化的二阶必要条件n设f(x)是二次连续可微的.n1.如果在点x*处f(x)达到了一个局部内点极大值,那么,H(X*)是
6、负半定的.n2.如果f(x)在点x处达到了一个局部内点极小值,那么,H(X)是负正定的.定理A2.102022/11/3032第32页,本讲稿共53页或者H(X*)0,由于z是任意取的,这以为着H(X*)是负半定的.同理,如果在点x=x处f被最小化,那么,g(0)0,使得,H(X)是半正定的.定理A2.10证明设有(p.1)设f(x)在x=x*处取得最大值,根据定理A2.8 必定有g(0)0.在点x*处或者在t=0处给(p.1)取值,2022/11/3033第33页,本讲稿共53页定理A2.11 海赛矩阵负定与正定的充分条件n设f(x)是二次连续可微的,并设Di(x)是海赛矩阵H(x)的第i阶
7、的主子式.n1.如果(-1)iDi(x)0,i=1,n,那么,H(x)是负定的.n2.如果Di(x)0,i=1,n,那么,H(x)是正定的.n如果在定义域内,对所有x,条件1成立,那么f是严格凹的.如果在定义域内,对所有x,条件2成立,那么f是严格凸的.2022/11/3034第34页,本讲稿共53页定理定理A2.11A2.11海赛矩阵负定与正定的充分条件海赛矩阵负定与正定的充分条件证明证明证明思路:借助定理A2.4的第四条(如果对于D中所有x,H(x)是负定的,那么,f是严格凹的.)将定理A2.12转化为矩阵的主子式改变符号是负定的,全为正为正定的.(P.2)2022/11/3035第35页
8、,本讲稿共53页2022/11/3036第36页,本讲稿共53页定理A2.12 实值函数局部内点最优化的充分条件n设f(x)是二次连续可微的,则:n1.如果fi(x*)=0,(-1)iDi(x)0,i=1,n,那么,f(x)在x*处将会获得一个局部极大值n2.如果fi(x)=0 并且Di(x)0,i=1,n,那么,f(x)在x处将会获得一个局部极小值2022/11/3037第37页,本讲稿共53页2022/11/3038第38页,本讲稿共53页定理A2.13(无约束的)局部与全局最优化n设f(x)是D上一个二次连续可微的实值凹函数.这里,点x*是D的一个内部点,那么如下三个命题等价:n1.f(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高级 微观经济学 优化 优秀 课件
限制150内