平面的法向量与平面的向量表示精.ppt
《平面的法向量与平面的向量表示精.ppt》由会员分享,可在线阅读,更多相关《平面的法向量与平面的向量表示精.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面的法向量与平面的向量表示第1页,本讲稿共32页一、复习引入一、复习引入1.1.1.1.直线与平面垂直的定义、判定和性质直线与平面垂直的定义、判定和性质直线与平面垂直的定义、判定和性质直线与平面垂直的定义、判定和性质定义:定义:如果一条直线垂直于一个平面内的任意一条直线,那么称这如果一条直线垂直于一个平面内的任意一条直线,那么称这条直线和这个平面垂直。条直线和这个平面垂直。判定:判定:如果一条直线垂直于一个平面内的两条相交直线,则这条直线如果一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直。与这个平面垂直。性质:性质:(1)(1)垂直于同一个平面的两条直线平行。垂直于同一个平
2、面的两条直线平行。(2)(2)垂直于同一条直线的两个平面平垂直于同一条直线的两个平面平行。行。第2页,本讲稿共32页二、概念形成二、概念形成概念概念1.1.平面的法向量平面的法向量已知平面已知平面 ,如果向量,如果向量 的基线与平面的基线与平面 垂直,则垂直,则 叫做平面叫做平面 的的法向量法向量或说向量或说向量 与平面与平面 正交正交。由平面的法向量的定义可知,由平面的法向量的定义可知,平面平面 的法向量有无穷多个的法向量有无穷多个,法向量一定垂直于与平面法向量一定垂直于与平面 共面的所有向量。共面的所有向量。由于垂直于同一平面的两条直线由于垂直于同一平面的两条直线平行,所以,一个平面的所有
3、法平行,所以,一个平面的所有法向量都是平行的。向量都是平行的。模为模为1 1的法向量,叫做的法向量,叫做单位法向量单位法向量,记作记作 显然显然第3页,本讲稿共32页二、概念形成二、概念形成概念概念2.2.直线与平面垂直的判定定理的向量证明直线与平面垂直的判定定理的向量证明直线与平面垂直的判定定理:直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直于这个平面。于这个平面。已知:已知:是平面是平面 内的两条相交的直线,且内的两条相交的直线,且 求证:求证:第4页,本讲稿共32页 正方体正方体ACAC1 1棱长
4、为棱长为1 1,求平面,求平面ADBADB1 1的的一个法向量一个法向量。二、概念形成二、概念形成概念概念1.1.平面的法向量平面的法向量例子:例子:A AB BC CD DA A1 1B B1 1C C1 1D D1 1一个平面的法向量不只一个,但它们都是平行一个平面的法向量不只一个,但它们都是平行(或共线或共线)的,我们借的,我们借助于待定系数法可求出平面的一个法向量。助于待定系数法可求出平面的一个法向量。第5页,本讲稿共32页待定系数法待定系数法第6页,本讲稿共32页例题例1:已知点 ,其中求平面 的一个法向量。有何关系?第7页,本讲稿共32页二、概念形成二、概念形成概念概念3.3.平面
5、的向量表示平面的向量表示空间直线可以用向量来表示,对于空间的平面也可以用向量来空间直线可以用向量来表示,对于空间的平面也可以用向量来刻画。刻画。设设A A是空间任意一点,是空间任意一点,为空间任意一个非零向量,适合条为空间任意一个非零向量,适合条件件 的点的点 M M 的集合构成什么样的图形?的集合构成什么样的图形?A AM MM M1 1M M2 2我们可以通过空间一点和一个非我们可以通过空间一点和一个非零向量确定唯一的一个与该向量零向量确定唯一的一个与该向量垂直的平面。垂直的平面。称此为称此为平面的向量表达式。平面的向量表达式。第8页,本讲稿共32页二、概念形成二、概念形成概念概念4.4.
6、用法向量证明平面与平面平行及垂直用法向量证明平面与平面平行及垂直设设 分别是平面分别是平面 的法向量,则有的法向量,则有第9页,本讲稿共32页 已知正方体已知正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,中,E E,F F分别是分别是BBBB1 1,CDCD的中点。的中点。求证:平面求证:平面DEADEA平面平面A A1 1FDFD1 1 。二、概念形成二、概念形成概念概念4.4.用法向量证明平面与平面平行及垂直用法向量证明平面与平面平行及垂直例子例子A AB BC CD DA A1 1B B1 1C C1 1D D1 1E EF F利用法向量证明两个平面垂直的基
7、本思路是证明两个平面的法向量互利用法向量证明两个平面垂直的基本思路是证明两个平面的法向量互相垂直。相垂直。第10页,本讲稿共32页射影:射影:已知平面已知平面 和一点和一点A A,过点,过点A A作作 的垂线的垂线 与与 交于点交于点 ,则,则 就是点就是点A A在平面在平面 内的正射影,也可简称射影。内的正射影,也可简称射影。二、概念形成二、概念形成概念概念5.5.用法向量证明用法向量证明“三垂线定理三垂线定理”预备知识:预备知识:A A斜线在平面上的正射影:设直斜线在平面上的正射影:设直线线 与平面与平面 交于点交于点B B,但不,但不和和 垂直,那么直线垂直,那么直线 叫做叫做这个平面的
8、斜线。斜线和平面这个平面的斜线。斜线和平面的交点的交点B B叫做斜足。叫做斜足。斜线在平面上的正射影斜线在平面上的正射影:在直在直线线 上任取一点上任取一点A A,作,作A A点在平点在平面面 内的射影内的射影 ,则平面内,则平面内直线直线 叫做斜线叫做斜线 在该平在该平面内的射影。面内的射影。A A第11页,本讲稿共32页已知已知 是平面是平面 的斜线,的斜线,是是 在平面在平面 内的射影内的射影,直线直线 且且二、概念形成二、概念形成概念概念5.5.用法向量证明用法向量证明“三垂线定理三垂线定理”三垂线定理:三垂线定理:如果在如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 表示
限制150内