数学建模聚类分析精.ppt
《数学建模聚类分析精.ppt》由会员分享,可在线阅读,更多相关《数学建模聚类分析精.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模聚类分析数学建模聚类分析第1页,本讲稿共47页 聚类分析(Cluster Analysis)是研究“物以类聚”的一种多元统计方法。国内有人称它为群分析、点群分析、簇群分析等。第2页,本讲稿共47页一、聚类分析的基本概念一、聚类分析的基本概念l研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。l聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。l职能是建立一种能按照样品或变量的相似程度进行分类的方法。第3页,本讲稿共47页 聚类分析的聚类分析的基本
2、思想基本思想是认为我们所研究的样本或指标(变量)之间是认为我们所研究的样本或指标(变量)之间存在着程度不同的相似性(亲疏关系)。于是根据一批样本的多个观测存在着程度不同的相似性(亲疏关系)。于是根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直
3、到把所有样本(或指标)都聚合完毕,把不同的类型一一分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方法是最常用的、最基本的一种,称为系统聚类分析。法是最常用的、最基本的一种,称为系统聚类分析。第4页,本讲稿共47页第5页,本讲稿共47页l除此以外,还有动态聚类法、图论聚类法、模糊聚类法、有序聚类法等。l聚类分析有两种:一种是对样本的分类,
4、称为聚类分析有两种:一种是对样本的分类,称为Q型,另一种是对变量(指标)的分类,称为型,另一种是对变量(指标)的分类,称为R型。型。第6页,本讲稿共47页lR型聚类分析的主要作用:型聚类分析的主要作用:不但可以了解个别变量之间的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。根据变量的分类结果以及它们之间的关系,可以选择主要变量进行Q型聚类分析或回归分析。(R2为选择标准)lQ型聚类分析的主要作用:型聚类分析的主要作用:可以综合利用多个变量的信息对样本进行分析。分类结果直观,聚类谱系图清楚地表现数值分类结果。聚类分析所得到的结果比传统分类方法更细致、全面、合理。在课堂上主要讨论Q型聚类分析,
5、Q型聚类常用的统计量是距离.第7页,本讲稿共47页l那么那么Q型系统聚类法则可以表述为:型系统聚类法则可以表述为:把样本看成把样本看成n维空间的点,而把变量看成维空间的点,而把变量看成n维空间的坐标轴,维空间的坐标轴,m个样本开始时自成一类,个样本开始时自成一类,然后规定各类之间的距离,将距离最小的一对然后规定各类之间的距离,将距离最小的一对并成一类,然后再计算距离,直到所有单位全并成一类,然后再计算距离,直到所有单位全部合并为止。部合并为止。第8页,本讲稿共47页二、距离和相似系数二、距离和相似系数 在进行聚类分析时,样本间的相似系数和距离有多种不同的定义,通常按特性来划分。变量特征的测度尺
6、度有三种类型:间隔尺度(由连续的实值变量表示)有序尺度(没有明确的数量表示,只有次序关系,如产品等级)名义尺度(具有某种特性,如性别)第9页,本讲稿共47页l从一组复杂数据产生一个相当简单的类结构,必然要求进行“相关性”或“相似性”的度量。在相似性度量的选择中,常常包含许多主观上的考虑,但最重要的考虑是指标的性质或观测的尺度(名义、次序、间隔)以及相关知识。l课堂上主要讨论的指标测量为间隔尺度的情况。第10页,本讲稿共47页距离距离l每个样本有p个指标,因此每个样本可以看成p维空间中的一个点,n个样本就组成p维空间中的n个点,这时很自然想到用距离来度量n个样本间的接近程度。l用 表示第i个样本
7、与第j个样本之间的距离。一切距离应满足以下条件:第11页,本讲稿共47页常见的距离有:常见的距离有:lblock distance 绝对值距离绝对值距离:leuclidean distance 欧式距离欧式距离lsquared euclidean distance 平方欧式距离平方欧式距离lchebychev distance 切比雪夫距离切比雪夫距离lminkowski distance 明考斯基距离明考斯基距离 (明氏距离)(明氏距离)当当q=1,2时,为绝对值、欧式距离;时,为绝对值、欧式距离;若趋近无穷时,则为切比雪夫距离若趋近无穷时,则为切比雪夫距离第12页,本讲稿共47页明氏距离在
8、实际的运用很多,但有一些缺点。例如观明氏距离在实际的运用很多,但有一些缺点。例如观测值的单位问题;指标间的相关问题,因此改进得到测值的单位问题;指标间的相关问题,因此改进得到以下两种距离:以下两种距离:lLanberra 兰氏距离lMahalanobis 马氏距离l以上都是样本间距离的定义。第13页,本讲稿共47页相似系数相似系数l夹角余弦l相关系数l变量间的距离l利用相似系数来定义距离l利用样本协差阵来定义距离l把变量Xi的n次观测值看成n维空间的点,在n维空间中定义m个变量间的距离。第14页,本讲稿共47页l 夹角余弦 两变量的夹角余弦定义为:第15页,本讲稿共47页l 相关系数 两变量的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 聚类分析
限制150内