三垂线定理及逆定理的应用优秀PPT.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《三垂线定理及逆定理的应用优秀PPT.ppt》由会员分享,可在线阅读,更多相关《三垂线定理及逆定理的应用优秀PPT.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三垂线定理及逆定理的应用第1页,本讲稿共15页三垂线定理及逆定理的应用三垂线定理及逆定理的应用第2页,本讲稿共15页例一:判断下列命题是否正确例一:判断下列命题是否正确()若一直线垂直于一个平面的一条斜线,则该直线必垂直()若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在平面上的射影。于斜线在平面上的射影。()()平面内与这个平面的一条斜线垂直的直线互相平行。()平面内与这个平面的一条斜线垂直的直线互相平行。()(3)若两条直线互相垂直,且其中的一条平行一个平面,)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在平面上的射影互相垂另一条是这个平面的斜
2、线,则这两条直线在平面上的射影互相垂直。直。()错误错误正确正确正确正确第3页,本讲稿共15页ABDCCABD1111例二:在正方体例二:在正方体 中:中:猜想猜想 和和 具有什么特殊的位置关系?能否找到与具有什么特殊的位置关系?能否找到与 具具有这种关系的其他面对角线吗?并简要证明。有这种关系的其他面对角线吗?并简要证明。证明:证明:第4页,本讲稿共15页 变题变题:是是 上一动点,在平面上一动点,在平面 上能否作一条过点上能否作一条过点 的线段与的线段与 垂直垂直?是面是面 内一点,在平面内一点,在平面 上能否作一条过点上能否作一条过点 的线段与的线段与 垂直?垂直?ABCABCD1D11
3、1P.F分析:第一问:显见分析:第一问:显见 过点过点 作作 的平行线即可。第的平行线即可。第二问:找到二问:找到 在面内的射影在面内的射影 ,过点过点 作射影的垂线段即可。作射影的垂线段即可。第5页,本讲稿共15页.EOAPBCD例三:例三:第6页,本讲稿共15页.EOAPBCDF第7页,本讲稿共15页NMPABCD.E 练习:已知,练习:已知,PA垂直于矩形垂直于矩形ABCD所在平面,所在平面,M、N分别是分别是AB、PC的中点的中点 求证:求证:MN AB第8页,本讲稿共15页ABDCCABD1111.PO思考:在正方体思考:在正方体 中,中,是是 的中点,的中点,为底面为底面 的中心。
4、的中心。求证:求证:分析:分析:与与 异面,异面,、既可为平面的斜线,也可为平面内既可为平面的斜线,也可为平面内直线。关键在于平面的选择直线。关键在于平面的选择,射影射影的确定。的确定。方法一:以方法一:以 为平面,则为平面,则 是平面的斜线,是平面的斜线,是平面内直线。是平面内直线。由条件可知:由条件可知:平面平面 ,则则 为为 在平面在平面 内的内的射影。根据三垂线定理,问题转化为射影。根据三垂线定理,问题转化为证明证明 即可。即可。第9页,本讲稿共15页ABDCCABD1111.POM方法二:以方法二:以 为平面,为平面,是平面的斜线,是平面的斜线,是平面内直线。是平面内直线。由条件可知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 垂线 定理 逆定理 应用 优秀 PPT
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内