实验三-K-均值聚类算法实验报告(共4页).doc
《实验三-K-均值聚类算法实验报告(共4页).doc》由会员分享,可在线阅读,更多相关《实验三-K-均值聚类算法实验报告(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实验三 K-Means聚类算法 一、 实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、 实验环境 1) 具有相关编程软件的PC机 三、 实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标四、算法思想K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。实验
2、代码function km(k,A)%函数名里不要出现“-”warning offn,p=size(A);%输入数据有n个样本,p个属性cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性%A(:,p+1)=100;A(:,p+1)=0;for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k) cid(i,:)=A(m,:); cid;endAsum=0;Csum2=NaN;flags=1;times=1;while flags flags=0; times=
3、times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n for j=1:k dist(i,j)=sqrt(sum(A(i,:)-cid(j,:).2);%欧氏距离 end %A(i,p+1)=min(dist(i,:);%与中心的最小距离 x,y=find(dist(i,:)=min(dist(i,:); c,d=size(find(y=A(i,p+1); if c=0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; r,c=find(A(:,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 均值 算法 报告
限制150内