【英文文学】The Movements and Habits of Climbing Plants.docx
《【英文文学】The Movements and Habits of Climbing Plants.docx》由会员分享,可在线阅读,更多相关《【英文文学】The Movements and Habits of Climbing Plants.docx(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【英文文学】The Movements and Habits of Climbing PlantsPrefaceThis Essay first appeared in the ninth volume of the Journal of the Linnean Society, published in 1865. It is here reproduced in a corrected and, I hope, clearer form, with some additional facts. The illustrations were drawn by my son, George D
2、arwin. Fritz Muller, after the publication of my paper, sent to the Linnean Society (Journal, vol. ix., p. 344) some interesting observations on the climbing plants of South Brazil, to which I shall frequently refer. Recently two important memoirs, chiefly on the difference in growth between the upp
3、er and lower sides of tendrils, and on the mechanism of the movements of twining-plants, by Dr. Hugo de Vries, have appeared in the Arbeiten des Botanischen Instituts in Wurzburg, Heft. iii., 1873. These memoirs ought to be carefully studied by every one interested in the subject, as I can here give
4、 only references to the more important points. This excellent observer, as well as Professor Sachs, 1 attributes all the movements of tendrils to rapid growth along one side; but, from reasons assigned towards the close of my fourth chapter, I cannot persuade myself that this holds good with respect
5、 to those due to a touch. In order that the reader may know what points have interested me most, I may call his attention to certain tendril-bearing plants; for instance, Bignonia capreolata, Cobaea, Echinocystis, and Hanburya, which display as beautiful adaptations as can be found in any part of th
6、e kingdom of nature. It is, also, an interesting fact that intermediate states between organs fitted for widely different functions, may be observed on the same individual plant of Corydalis claviculata and the common vine; and these cases illustrate in a striking manner the principle of the gradual
7、 evolution of species.Appendix to Preface (1882).Since the publication of this Edition two papers by eminent botanists have appeared; Schwendener, Das Winden der Pflanzen (Monatsberichte der Berliner Akademie, Dec. 1881), and J. Sachs, Notiz uber Schlingpflanzen (Arbeiten des botanischen Instituts i
8、n Wurzburg, Bd. ii. p. 719, 1882). The view “that the capacity of revolving, on which most climbers depend, is inherent, though undeveloped, in almost every plant in the vegetable kingdom” (Climbing Plants, p. 205), has been confirmed by the observations on circumnutation since given in The Power of
9、 Movement in Plants.Errata.On pp. 28, 32, 40, 53, statements are made with reference to the supposed acceleration of the revolving movement towards the light. It appears from the observations given in The Power of Movement in Plants, p. 451, that these conclusions were drawn from insufficient observ
10、ations, and are erroneous.Chapter I. Twining PlantsIntroductory remarks Description of the twining of the Hop Torsion of the stems Nature of the revolving movement, and manner of ascent Stems not irritable Rate of revolution in various plants Thickness of the support round which plants can twine Spe
11、cies which revolve in an anomalous manner.I was led to this subject by an interesting, but short paper by Professor Asa Gray on the movements of the tendrils of some Cucurbitaceous plants. 2 My observations were more than half completed before I learnt that the surprising phenomenon of the spontaneo
12、us revolutions of the stems and tendrils of climbing plants had been long ago observed by Palm and by Hugo von Mohl, 3 and had subsequently been the subject of two memoirs by Dutrochet. 4 Nevertheless, I believe that my observations, founded on the examination of above a hundred widely distinct livi
13、ng species, contain sufficient novelty to justify me in publishing them.Climbing plants may be divided into four classes. First, those which twine spirally round a support, and are not aided by any other movement. Secondly, those endowed with irritable organs, which when they touch any object clasp
14、it; such organs consisting of modified leaves, branches, or flower-peduncles. But these two classes sometimes graduate to a certain extent into one another. Plants of the third class ascend merely by the aid of hooks; and those of the fourth by rootlets; but as in neither class do the plants exhibit
15、 any special movements, they present little interest, and generally when I speak of climbing plants I refer to the two first great classes.TWINING PLANTS.This is the largest subdivision, and is apparently the primordial and simplest condition of the class. My observations will be best given by takin
16、g a few special cases. When the shoot of a Hop (Humulus lupulus) rises from the ground, the two or three first-formed joints or internodes are straight and remain stationary; but the next-formed, whilst very young, may be seen to bend to one side and to travel slowly round towards all points of the
17、compass, moving, like the hands of a watch, with the sun. The movement very soon acquires its full ordinary velocity. From seven observations made during August on shoots proceeding from a plant which had been cut down, and on another plant during April, the average rate during hot weather and durin
18、g the day is 2 hrs. 8 m. for each revolution; and none of the revolutions varied much from this rate. The revolving movement continues as long as the plant continues to grow; but each separate internode, as it becomes old, ceases to move.To ascertain more precisely what amount of movement each inter
19、node underwent, I kept a potted plant, during the night and day, in a well-warmed room to which I was confined by illness. A long shoot projected beyond the upper end of the supporting stick, and was steadily revolving. I then took a longer stick and tied up the shoot, so that only a very young inte
20、rnode, 1.75 of an inch in length, was left free. This was so nearly upright that its revolution could not be easily observed; but it certainly moved, and the side of the internode which was at one time convex became concave, which, as we shall hereafter see, is a sure sign of the revolving movement.
21、 I will assume that it made at least one revolution during the first twenty-four hours. Early the next morning its position was marked, and it made a second revolution in 9 hrs.; during the latter part of this revolution it moved much quicker, and the third circle was performed in the evening in a l
22、ittle over 3 hrs. As on the succeeding morning I found that the shoot revolved in 2 hrs. 45 m., it must have made during the night four revolutions, each at the average rate of a little over 3 hrs. I should add that the temperature of the room varied only a little. The shoot had now grown 3.5 inches
23、 in length, and carried at its extremity a young internode 1 inch in length, which showed slight changes in its curvature. The next or ninth revolution was effected in 2 hrs. 30 m. From this time forward, the revolutions were easily observed. The thirty-sixth revolution was performed at the usual ra
24、te; so was the last or thirty-seventh, but it was not completed; for the internode suddenly became upright, and after moving to the centre, remained motionless. I tied a weight to its upper end, so as to bow it slightly and thus detect any movement; but there was none. Some time before the last revo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 英文文学 【英文文学】The Movements and Habits of Climbing Plants 英文 文学 The
链接地址:https://www.taowenge.com/p-6523136.html
限制150内