趣味数学七桥问题.ppt
《趣味数学七桥问题.ppt》由会员分享,可在线阅读,更多相关《趣味数学七桥问题.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、尼斯堡七桥问题哥小热身小热身数学家:欧拉莱昂哈德欧拉(1707年4月15日1783年9月18日),瑞士数学家、自然科学家。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,无穷小分析引论、微分学原理、积分学原理等都成为数学界中的经典著作。欧拉喜欢音乐、生活丰富多彩,结过两次婚,生了13个孩子,存活5个,据说工作时往往儿孙绕膝。他去世的那天下午,还给孙女上数学课,跟朋友讨论天王星轨道的计算。突然说了一句“我要死了”,说完就倒下,停止了生命和计算。让微积分成长成人全才数学家多产数学家单击添加大标题Your text18世纪,在(现俄罗斯)哥尼
2、斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如左图)。城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是数学史上著名的七桥问题。小热身 七桥问题单击添加大标题Your text1836年,瑞士著名的数学家欧拉,欧拉发现了这个问题的本质:这个问题与岛的形状和大小无关,与河岸的形状长短无关、与桥的形状、长短无关,重要的是桥、河岸、岛之间的位置关系。把两岸和小岛缩成一个点,桥当作连接这些点的一条线。小热身 七桥问题问题转化为:笔尖不离开纸面,一笔画出给定的图
3、形,不允许重复任何一条线,这样的图形简称为“一笔画”小热身 七桥问题小热身 七桥问题一笔画能一笔画的图形必须是连通图。从图的一点出发,笔不离纸,经过每条边恰好一次,不能重复。但是,并不是所有的连通图都可以一笔画出。它是由图的奇、偶点的数目来决定的。有奇数条边相连的点叫奇点。如:有偶数条边相连的点叫偶点。如:小热身 七桥问题一笔画 欧拉定理欧拉定理:凡是由偶点组成的连通图,一定可以一笔画成。画时可以任一偶点为起点,最后一定能以这个点为终点画完此图。只有两个奇点的连通图,一定可以一笔画完。画时必须以一个奇点为起点,另一个奇点为终点。其他情况的图,都不能一笔画出。小热身 七桥问题一笔画 欧拉定理 小
4、练习下列图形中,你能一笔画成吗?若能,请画出路径。小热身 七桥问题一笔画 欧拉定理 小练习画一画下图是国际奥委会的会标,你能把它一笔画出来吗?案例:西北大学的洒水车要给主要路案例:西北大学的洒水车要给主要路面洒水,该如何确定行车路线?面洒水,该如何确定行车路线?小热身 七桥问题一笔画 欧拉定理小练习画一画拓展下列图形最少能几笔画成?有什么规律?ABCDABCDEFGHIJKL有N个奇点的图形,要N2笔才能画成。透过现象看本质透过现象看本质一列火车在穿过一座横跨山谷的大桥时,火车上的一个旅客从窗口丢下一块石头,请问,这块石头的落点会在哪里?正确答案是呈抛物线坠落,除了重力外,石头同时还有与火车同
5、向的初始速度需要考虑。透过现象看本质透过现象看本质聪明的人在他们的脑海中有一个更科学、精密、高效的“抽象地图”,这个地图里面存储的不是地标、边界、线路,而是概念、知识、事实和程序。他们跟普通人的最大区别就是既拿着一张信息又多又全的好地图,又特别会从这些地图中高效提取与组合信息透过现象看本质透过现象看本质在世界地图里面找“北京”,你需要先找到“中国”的大概位置。在心理地图里面,找“产前抑郁症”相关的问题,聪明人不会第一反应就把知识体系和上面提到的整体表征直接定位到“气象学”去,相应的,他们会直接定位到“心理学”,甚至能直接精确定位到“临床心理学”,进而增加解决问题的效率。这就是考验你头脑里心理地
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 趣味 数学 问题
限制150内