多组分系统热力学讲稿优秀PPT.ppt
《多组分系统热力学讲稿优秀PPT.ppt》由会员分享,可在线阅读,更多相关《多组分系统热力学讲稿优秀PPT.ppt(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多组分系统热力学讲稿第1页,本讲稿共61页4.1 偏摩尔量4.2 化学势4.3 气体组分的化学势4.4 拉乌尔定律和亨利定律4.5 理想液态混合物4.6 理想稀溶液4.7 稀溶液的依数性4.8 逸度与逸度因子4.9 活度与活度因子目 录2第2页,本讲稿共61页基本概念1.系统分类系统分类 简单简单系统:系统:一个或几个一个或几个纯纯物质相和组成不变的相所形成的平衡系统。物质相和组成不变的相所形成的平衡系统。多组分多组分系统系统 单相单相系统系统:混合物、溶液。:混合物、溶液。多相多相系统系统:几个单相。:几个单相。2.多组分系统热力学多组分系统热力学 溶液溶液、相平衡、化学平衡系统热力学。、相
2、平衡、化学平衡系统热力学。3.多组分单相系统分类多组分单相系统分类 液态液态 按按聚集状态聚集状态分分混合物:气态混合物:气态/液态液态/固态固态;溶液:溶液:液态液态/固态固态。按按规律性规律性分分混合物:理想混合物:理想/真实;真实;溶液:理想稀溶液:理想稀/真实。真实。按按导电性导电性分分 电解质溶液,非电解质溶液。电解质溶液,非电解质溶液。3第3页,本讲稿共61页4第4页,本讲稿共61页表表4.1.1293.15K时乙醇与水的混合液的体积与浓度的关系时乙醇与水的混合液的体积与浓度的关系_乙醇的乙醇的 乙醇乙醇 水水 混合前的体积混合前的体积 混合后溶液的体积混合后溶液的体积 V质量分数
3、质量分数 /cm3 /cm3 (相加值相加值)/cm3 (实验值实验值)/cm3 /cm3 0.10 12.67 90.36 103.03 101.84 -1.19 0.20 25.34 80.32 105.66 103.24 -2.42 0.30 38.01 70.28 108.29 104.84 -3.45 0.40 50.68 60.24 110.92 106.93 -3.99 0.50 63.35 50.20 113.55 109.43 -4.12 0.60 76.02 40.16 116.18 112.22 -3.96 0.70 88.69 36.12 118.81 115.25 -
4、3.56 0.80 101.36 20.08 121.44 118.56 -2.88 0.90 114.03 10.04 124.07 122.25 -1.825第5页,本讲稿共61页4.1 偏摩尔量组分组分B的某一偏摩尔量的某一偏摩尔量XB一定一定T,p下下,一定组成的混合物一定组成的混合物(溶液溶液)中单位物中单位物质的量的质的量的B对系统的对系统的X的贡献。的贡献。各广度量均有偏摩尔量。各广度量均有偏摩尔量。4.1.1 问题的提出问题的提出(1)实例实例v纯物质单相系统纯物质单相系统:广度量有简单加和性。如广度量有简单加和性。如 298 K 乙醇乙醇(l)的的V。v多组分均相系统多组分均
5、相系统:真实液态混合物:真实液态混合物 B:水水(l)+C:乙醇乙醇(l),298 K 常压常压 V*m,B=18.09 cm3mol-1,V*m,C=58.35 cm3mol-1,将将1.0 mol水与水与1.0 mol乙乙醇混合,混合物醇混合,混合物V=76.4 cm3(相加相加)?V=74.4 cm3,差,差2.0 cm3。理想液态混合物理想液态混合物:混合前后体积不变的系统。:混合前后体积不变的系统。V=nBV*m,B+nCV*m,C (理想混合物理想混合物)真实液态混合物真实液态混合物:混合前后体积发生变化的系统。:混合前后体积发生变化的系统。VnBV*m,B+nCV*m,C (真实
6、混合物真实混合物)6第6页,本讲稿共61页(2)造成体积不相等的原因造成体积不相等的原因xCVm图图4.1.1 VBCBT一定一定aVBVCV*m,BV*m,C 分子间结构大小、作用力不同,单位物质的量在混合物中对体积的贡分子间结构大小、作用力不同,单位物质的量在混合物中对体积的贡献不同于纯液体。献不同于纯液体。水水(l):298 K 常压常压 V*m,B=18.09 cm3mol-1,VB=17.0 cm3mol-1(偏摩尔体积偏摩尔体积)。乙醇乙醇(l):V*m,C=58.35 cm3mol-1,VC=57.4 cm3mol-1(偏摩尔体积偏摩尔体积)。7第7页,本讲稿共61页表表4.1.
7、2293.15K、101.325kPa下乙醇溶液中乙醇的偏摩尔体积下乙醇溶液中乙醇的偏摩尔体积乙醇的摩尔分数乙醇的摩尔分数0.042 0.088 0.14 0.21 0.28 0.37 0.48 0.61 0.78 1.00乙醇的偏摩尔体积乙醇的偏摩尔体积/cm319.5 21.2 23.1 25.5 28.3 31.9 36.2 41.7 43.7 58.38第8页,本讲稿共61页(3)偏摩尔体积偏摩尔体积VB概念概念:在一定温度压力下,在组分在一定温度压力下,在组分B浓度一定的无限大量系统中加入单位浓度一定的无限大量系统中加入单位物质的量的物质的量的B所引起系统体积的增加值,称为组分所引起
8、系统体积的增加值,称为组分B在此浓度时的偏摩尔在此浓度时的偏摩尔体积。体积。=在有限量的该组成的混合物中加入无限小量在有限量的该组成的混合物中加入无限小量dnB的的B引起系统体积增加量引起系统体积增加量dV折合成加入单位物质的量的折合成加入单位物质的量的B时的增量。时的增量。物质物质B的偏摩尔体积的表达式的偏摩尔体积的表达式下标下标nC除组分除组分B外,其余组分的外,其余组分的 n 均不变。均不变。(4)真实液态混合物的体积真实液态混合物的体积V V=nBVB+nCVC 表述表述 9第9页,本讲稿共61页4.1.2 偏摩尔量概念概念:由组分由组分B,D,.形成的混合物系统中,任一广度量形成的混
9、合物系统中,任一广度量 X 是是T,p,nB,nC,nD,.的函数,即的函数,即 X=X(T,p,nB,nC,nD,.)对此式求全微分对此式求全微分式中式中在在p及混合物中各组分的及混合物中各组分的n均不变的条件下均不变的条件下,系统广度量系统广度量X 随随T 的的变化率。变化率。在在T,p及除了组分及除了组分B以外其余各组分的以外其余各组分的n均不变的条件下均不变的条件下,由于组分由于组分B的的nB发生了微小变化引起系统广度量发生了微小变化引起系统广度量X 随组分随组分B的的nB的变化率。的变化率。=加入单位加入单位n的的B时时(视组成不变视组成不变)X增量。增量。=该该T,p下下,一定组成
10、的一定组成的混合物中单位混合物中单位n的组分的组分B的的X值。值。在在T及混合物中各组分的及混合物中各组分的n均不变的条件下均不变的条件下,系统广度量系统广度量X 随随 p的变化率。的变化率。这一物理量是偏导数的形式这一物理量是偏导数的形式组分组分B的偏摩尔量的偏摩尔量XB10第10页,本讲稿共61页 约定 下标下标nBnB,nC,nD,.均不变均不变,即相的组成不变即相的组成不变。下标下标nCnC,nD,.均不变均不变,即除组分即除组分B外外,其余其余组分组分C,D,.的的 n均不变均不变。在在T,p及除了组分及除了组分B以外其余各组分的物质的量均不改变的条件下以外其余各组分的物质的量均不改
11、变的条件下,广度广度量量X 随组分随组分B的物质的量的变化率的物质的量的变化率 XB,称为组分称为组分B的。的。X全微分式的简写全微分式的简写 偏摩尔量偏摩尔量定义式定义式 偏摩尔量定义11第11页,本讲稿共61页各偏摩尔量XB的定义式偏摩尔体积偏摩尔体积 偏摩尔热力学能偏摩尔热力学能 偏摩尔焓偏摩尔焓 偏摩尔亥姆霍兹函数偏摩尔亥姆霍兹函数 偏摩尔吉布斯函数偏摩尔吉布斯函数 =B 又称又称化学势化学势偏摩尔熵偏摩尔熵 注意 广度量才有偏摩尔量,强度量无偏摩尔量。广度量才有偏摩尔量,强度量无偏摩尔量。偏摩尔量是强度量,同偏摩尔量是强度量,同 Vm类似。类似。只有在恒只有在恒T 恒恒p下下,系统的
12、广度量对其组分系统的广度量对其组分B的物质的量的偏微分的物质的量的偏微分,才能称为偏摩才能称为偏摩尔量;其它条件尔量;其它条件(如恒如恒T 恒恒V)下的偏微分下的偏微分,不能称为偏摩尔量。不能称为偏摩尔量。任何偏摩尔量都是任何偏摩尔量都是T,p,组成组成(浓度浓度)的函数。的函数。纯物质的偏摩尔量就是摩尔量纯物质的偏摩尔量就是摩尔量V*m。12第12页,本讲稿共61页4.1.3 偏摩尔量的集合公式X全微分式中,变量有全微分式中,变量有T,p,nB,无其它外力。,无其它外力。在恒在恒T 恒恒p条件下,条件下,dT=0,dp=0,则则恒恒T 恒恒p下下XB与混合物的组成有关。但若按混合物原有组成的
13、比例同与混合物的组成有关。但若按混合物原有组成的比例同时微量地加入组分时微量地加入组分B,C,.,以形成混合物以形成混合物,过程中组成恒定过程中组成恒定,XB,XC,.为定值为定值,积分积分即即恒恒T 恒恒p定组成下,定组成下,偏摩尔量的集合公式偏摩尔量的集合公式说明说明,在一定的温度、压力下在一定的温度、压力下,混合物的混合物的任一种广度量任一种广度量为形成它的各组分的为形成它的各组分的偏摩尔量及其物质的量的乘偏摩尔量及其物质的量的乘积之和积之和。如如 G=nBGB=nB B13第13页,本讲稿共61页4.1.4 偏摩尔量的测定法举例偏摩尔量的测定法举例切线法切线法 一定一定T,p下下,向向
14、nC一定的一定的 液体组分中,不断加入液体组分中,不断加入B,测混合物测混合物V,作作V nB图,图,nBV在在xB作切线,其斜率作切线,其斜率 为组成为为组成为xB的混合物中组分的混合物中组分B的的VB。VC=(V-nBVB)/nC 代入代入nB VB图图4.1.2 VB 求算求算xB解析法解析法 V=f(nB)14第14页,本讲稿共61页4.1.5 偏摩尔量与摩尔量偏摩尔量与摩尔量xCVm图图4.1.3 VB与与V*m.BCBT一定一定adVBVCV*m,BV*m,C理想混合物理想混合物 虚线虚线Vm=xBV*m,B+xCV*m,C =V*m,B+(V*m,C-V*m,B)xC真实混合物真
15、实混合物 实线实线V=xBVB+xCVC x 某纯组分如某纯组分如B,VB 纯组分的纯组分的V*m。15第15页,本讲稿共61页 当混合物的组成发生变化时,各组分偏摩尔量变化的关系?当混合物的组成发生变化时,各组分偏摩尔量变化的关系?T,p一定时,对偏摩尔集合公式全微分一定时,对偏摩尔集合公式全微分 dX=nBdXB+XBdnB B B nBdXB=0 除以除以 n=nB xBdXB=0 上上二式均为二式均为Gibbs-Duhem方程方程,不同组分同一偏摩尔量间的关系。不同组分同一偏摩尔量间的关系。若为二组分混合物若为二组分混合物 xBdXB=-xCdXC XB,XC由由4.1.6 吉布斯吉布
16、斯-杜亥姆方程杜亥姆方程16第16页,本讲稿共61页混合物或溶液中同一组分如混合物或溶液中同一组分如B,它的不同偏摩尔量如它的不同偏摩尔量如UB,HB,SB,GB 等之等之间的关系间的关系与纯物质各摩尔量间的关系相同与纯物质各摩尔量间的关系相同。HB=UB+pVB GB=HB-TSB=UB+pVB-TSB=AB+pVB 4.1.7 同一组分不同偏摩尔量间的关系同一组分不同偏摩尔量间的关系17第17页,本讲稿共61页4.2 化学势应用广,重要。应用广,重要。化学势化学势定义定义 为为混合物或溶液中组分混合物或溶液中组分B的偏摩尔吉布斯函数的偏摩尔吉布斯函数GB。符号符号:B;单位单位:Jmol-
17、1。定义式定义式4.2.1 多组分单相系统的热力学公式多组分单相系统的热力学公式 混合物的混合物的G表示表示 G=G(T,p,nB,nC,nD,.)由由X全微分式全微分式 18第18页,本讲稿共61页19第19页,本讲稿共61页 多组分单相系统的热力学基本方程多组分单相系统的热力学基本方程更为普遍的热力学基本方程。适用于可变组成的封闭系统,开放系统。更为普遍的热力学基本方程。适用于可变组成的封闭系统,开放系统。代入代入 dU=d(G-pV+TS)的展开式的展开式代入代入 dH=d(G+TS)的展开式的展开式代入代入 dA=d(G-pV)的展开式的展开式与纯物质的相应的基本方程相比,都多了最后一
18、项。与纯物质的相应的基本方程相比,都多了最后一项。B=?另求全微分另求全微分 U=U(S,V,nB,nC,nD,.);H=H(S,p,nB,nC,nD,.);A=A(T,V,nB,nC,nD,.)全微分全微分20第20页,本讲稿共61页 化学势的其它形式化学势的其它形式 比较相应式子比较相应式子上一上一dG 的式子中的式子中,变量有变量有T 和和p T,p,nC不变不变上一上一dU 的式子中的式子中,变量有变量有S 和和V S,V,nC不变不变上一上一dH 的式子中的式子中,变量有变量有S 和和p S,p,nC不变不变上一上一dA 的式子中的式子中,变量有变量有T 和和V T,V,nC不变不变
19、以上以上3个偏微商均称为广义的化学势,且相等。个偏微商均称为广义的化学势,且相等。注意注意:后:后3个均是不是偏摩尔量?个均是不是偏摩尔量?21第21页,本讲稿共61页4.2.2 多组分多相系统的热力学公式多组分多相系统的热力学公式上面各式用于均匀系统。在恒温恒压下,上面各式用于均匀系统。在恒温恒压下,dT=0,dp=0,系统内部发生相变或化学变化系统内部发生相变或化学变化时,对时,对,.每一相,各相每一相,各相T,p均相同均相同对系统内各相的对系统内各相的dG求和求和 适用于适用于 封闭系统封闭系统 W=0,恒温、恒压的相变化、化学变化。恒温、恒压的相变化、化学变化。dU,dH,dA 也有类
20、似表达式。也有类似表达式。22第22页,本讲稿共61页4.2.3 化学势判据及应用化学势判据及应用根据根据dGT,p0(恒恒T 恒恒p,W=0)自发自发=平衡平衡将上式应用于多组分将上式应用于多组分单单相系统的基本方程相系统的基本方程 dG 自发自发=平衡平衡(dT=0,dp=0,W=0)再将其应用于多组分再将其应用于多组分多多相系统相系统0B()B()()()dn()=-dn()0T,p,W=0 dT=0,dp=0,W=0,=()dn()+()dn()=()-()dn()相变化能自发,应相变化能自发,应 dG0,即即 ()()两相平衡,两相平衡,dG=0,即即 ()=()相变化自发进行的方向
21、相变化自发进行的方向:从化学势高的一相转变到化学势低的一相,:从化学势高的一相转变到化学势低的一相,即朝着化学势减少的方向进行。即朝着化学势减少的方向进行。两相的化学势相等,两相处于相平衡状态。两相的化学势相等,两相处于相平衡状态。24第24页,本讲稿共61页4.3 气体组分的化学势 B状态函数,绝对值未知,选标准态作为计算的基准。状态函数,绝对值未知,选标准态作为计算的基准。气体的标准态气体的标准态:一定一定T,标准压力标准压力p=100kPa下具有理想气体性质的纯气体。下具有理想气体性质的纯气体。气体的标准化学势气体的标准化学势 B(g):标准状态下的气体的化学势。标准状态下的气体的化学势
22、。纯气体省略纯气体省略B,(g),是温度的函数。,是温度的函数。4.3.1 纯理想气体的化学势纯理想气体的化学势 *(pg)B(pg,p)B(pg,p)(g)*(pg)pgperfect gas*纯物质纯物质,非标准的非标准的由公式由公式 d=dGm=-SmdT+Vmdp,dT=0 d*=dG*m=V*mdp=(RT/p)dp=RTdln p 积分积分得得*(pg)=(g)+RT ln(p/p)纯理气纯理气T下,不同下,不同p的的*T25第25页,本讲稿共61页4.3.2 理想气体混合物中任一组分的化学势理想气体混合物中任一组分的化学势 B(pg)理气混合物中任一组分理气混合物中任一组分B的标
23、准态的标准态:该气体单独存在于该混合物:该气体单独存在于该混合物T及及p下的状态下的状态。与在混合物中分压为与在混合物中分压为p的状态相同。的状态相同。B(pg,p)B(pg,mix,pB=yB p)B(g)B(pg)T B(pg,mix,yB,pB=p)组成为组成为yB,总压,总压p,B的的pB=yBp的理气混合物中的理气混合物中B的状态的状态 =同同T,压力为压力为pB的的B气体单独存在时的状态。气体单独存在时的状态。B(pg)=B(g)+RTln(pB/p)*(pg)=(g)+RTln(p/p)与纯理气对比与纯理气对比 B(pg)26第26页,本讲稿共61页4.3.3 纯真实气体的化学势
24、纯真实气体的化学势 *(g)真实气体的标准态真实气体的标准态:在温度在温度T及及p下的假想的纯理想气体的状态。下的假想的纯理想气体的状态。求求*方法方法:计算纯真实气体在计算纯真实气体在p下下*(g)与与p下该气体下该气体(g)的差值。的差值。恒温恒温 途径途径 B(pg,p)B(g,p)(g)*(g)T GmB(pg,p)B(g,p0)Gm,2 Gm,1 Gm,3 Gm=*(g)-(g)=Gm,1+Gm,2+Gm,3 Gm,1=RTln(p/p)=B(pg,p0)*-纯纯式中式中 V*m(g)-V*m(pg)同同T,同同p下真实气体与理想气体摩尔体积差下真实气体与理想气体摩尔体积差 差。差。
25、27第27页,本讲稿共61页4.3.4 真实气体混合物中任一组分的化学势真实气体混合物中任一组分的化学势 B(g)方法类似方法类似B(pg,p)B(g,mix,pB=yB p)B(g)B(g)GBB(pg,mix,pB=yBp)B(g,mix,p0)GB,2 GB,1 GB,3=B(pg,mix,p0)B(pg,mix,yB,pB=p)始态始态=标准态标准态纯纯B在在T,p下理想气体,下理想气体,组成与真实气体混合物相同的理气混合组成与真实气体混合物相同的理气混合物中物中 pB=p的气体的气体B。GB=B(g)-B(g)=GB,1+GB,2+GB,3 GB,1=RTln(pB/p)理气偏摩尔体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 组分 系统 热力学 讲稿 优秀 PPT
限制150内