第二章简单线性回归模型优秀PPT.ppt
《第二章简单线性回归模型优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第二章简单线性回归模型优秀PPT.ppt(105页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章简单线性回归模型第一页,本课件共有105页未来我国旅游需求将快速增长,根据中国政府所制定的未来我国旅游需求将快速增长,根据中国政府所制定的远景目标,到远景目标,到20202020年,中国入境旅游人数将达到年,中国入境旅游人数将达到2.12.1亿人亿人次;国际旅游外汇收入次;国际旅游外汇收入580580亿美元,国内旅游收入亿美元,国内旅游收入25002500亿亿美元。到美元。到20202020年,中国旅游业总收入将超过年,中国旅游业总收入将超过30003000亿美元,亿美元,相当于国内生产总值的相当于国内生产总值的8%8%至至11%11%。(来源:(来源:2008年中国旅行社发展研究咨询报
2、告)年中国旅行社发展研究咨询报告)(参考现状:第一产业占(参考现状:第一产业占GDP的的15%,建筑业占,建筑业占GDP 的的7%)什么决定性因素能使中国什么决定性因素能使中国旅游业总收入超过旅游业总收入超过30003000亿美元亿美元?旅游业的发展与这种决定性因素的数量关系究竟是什么?旅游业的发展与这种决定性因素的数量关系究竟是什么?怎样具体测定旅游业发展与这种决定性因素的数量关系怎样具体测定旅游业发展与这种决定性因素的数量关系?2第二页,本课件共有105页需要研究经济变量之间数量关系的方法需要研究经济变量之间数量关系的方法为了不使问题复杂化为了不使问题复杂化,我们先在某些标准的我们先在某些
3、标准的(古典的古典的)假定假定条件下,用最简单的模型,对最简单的变量间数量关系加条件下,用最简单的模型,对最简单的变量间数量关系加以讨论以讨论显然,对旅游起决定性影响作用的是显然,对旅游起决定性影响作用的是“中国居民的收入中国居民的收入水平水平”以及以及“入境旅游人数入境旅游人数”等因素。等因素。“旅游业总收入旅游业总收入”(Y Y)与)与“居民平均收入居民平均收入”(X1X1)或)或者者“入境旅游人数入境旅游人数”(X2X2)有怎样的数量关系呢?)有怎样的数量关系呢?能否用某种线性或非线性关系式能否用某种线性或非线性关系式 Y=f(X)Y=f(X)去表现这去表现这 种数量关系呢种数量关系呢?
4、具体该具体该怎样去表现和计量呢怎样去表现和计量呢?第三页,本课件共有105页4 第一节第一节 回归分析与回归函数回归分析与回归函数 一、相关分析与回归分析一、相关分析与回归分析(对统计学的回顾)(对统计学的回顾)1 1、经济变量之间的相互关系、经济变量之间的相互关系 性质上可能有三种情况性质上可能有三种情况:确定性的函数关系确定性的函数关系 Y=f(X)可用数学方法计算可用数学方法计算 不确定的统计关系不确定的统计关系相关关系相关关系 Y=f(X)+(为随机变量为随机变量)可用统计方法分析可用统计方法分析 没有关系没有关系不用分析不用分析 第四页,本课件共有105页 相关关系的描述相关关系的描
5、述 最直观的描述方式最直观的描述方式坐标图(散布图、散点图)坐标图(散布图、散点图)5函数关系函数关系相关关系相关关系(线性线性)没有关系没有关系相关关系相关关系(非线性非线性)2、相关关系第五页,本课件共有105页66 相关关系的类型类型 从涉及的变量数量看从涉及的变量数量看 简单相关简单相关 多重相关(复相关)多重相关(复相关)从变量相关关系的表现形式看从变量相关关系的表现形式看 线性相关线性相关散布图接近一条直线散布图接近一条直线 非线性相关非线性相关散布图接近一条曲线散布图接近一条曲线 从变量相关关系变化的方向看从变量相关关系变化的方向看 正相关正相关变量同方向变化,同增同减变量同方向
6、变化,同增同减 负相关负相关变量反方向变化,一增一减变量反方向变化,一增一减 不相关不相关第六页,本课件共有105页7 3、相关程度的度量相关系数 如果如果和和总体的全部数据总体的全部数据都已知,都已知,和和的方差和的方差和协方差也已知,则协方差也已知,则 X和和Y的的总体线性相关系数总体线性相关系数:其中:其中:-X的方差的方差-Y的方差的方差-X和和Y的协方差的协方差特点:特点:总体相关系数只反映总体两个变量总体相关系数只反映总体两个变量 和和 的线性相关程度的线性相关程度对于特定的总体来说,对于特定的总体来说,和和 的数值是既定的,总体相关系的数值是既定的,总体相关系数数 是客观存在的特
7、定数值。是客观存在的特定数值。总体的两个变量总体的两个变量 和和 的全部数值通常不可能直接观测,所的全部数值通常不可能直接观测,所以总体相关系数一般是未知的。以总体相关系数一般是未知的。第七页,本课件共有105页8如果只知道如果只知道X和和Y的样本观测值,则的样本观测值,则X和和Y的的样本线性样本线性相关系数为:相关系数为:其中:其中:和和分别是变量分别是变量X和和Y的样本观测值,的样本观测值,和和分别是变量分别是变量X和和Y样本值的平均值样本值的平均值注意注意:是随抽样而变动的随机变量。是随抽样而变动的随机变量。X和和Y的的样本线性相关系数样本线性相关系数:相关系数较为简单相关系数较为简单,
8、也可以在一定程度上测定变量也可以在一定程度上测定变量间的数量关系间的数量关系,但是对于具体研究变量间的数量规律但是对于具体研究变量间的数量规律性还有局限性。性还有局限性。第八页,本课件共有105页 X X和和Y Y 都是相互对称的随机变量,都是相互对称的随机变量,线线性性相相关关系系数数只只反反映映变变量量间间的的线线性性相相关关程程度度,不不能能说说明非线性相关关系明非线性相关关系 样样本本相相关关系系数数是是总总体体相相关关系系数数的的样样本本估估计计值值,由由于于抽抽样样波动,样本相关系数是随抽样而变动的随机变量,波动,样本相关系数是随抽样而变动的随机变量,其统计显著性还有待检验其统计显
9、著性还有待检验 9对相关系数的正确理解和使用对相关系数的正确理解和使用第九页,本课件共有105页104 4、回归分析、回归分析回归的古典意义古典意义:高尔顿遗传学的回归概念高尔顿遗传学的回归概念 (父母身高与子女身高的关系父母身高与子女身高的关系)子女的身高有向人的平均身高子女的身高有向人的平均身高 回归回归 的趋势的趋势回归的现代意义现代意义:一个被解释变量对若干个一个被解释变量对若干个解释变量依存关系的研究解释变量依存关系的研究回归的目的目的(实质实质):由解释变量去估计被解释变由解释变量去估计被解释变量的平均值量的平均值第十页,本课件共有105页11被解释变量被解释变量Y Y的的条件分布
10、和条件概率条件分布和条件概率:当当解解释释变变量量X X取取某某固固定定值值时时(条条件件),Y Y 的的值值不不确确定定,Y Y的的不不同同取取值值会会形形成成一一定定的的分分布布,这这是是 Y Y 的的条条件件分分布布。X X取取某某固固定值时,定值时,Y Y 取不同值的概率称为取不同值的概率称为条件概率条件概率。被解释变量被解释变量 Y Y 的的条件期望条件期望:对于对于 X X 的每一个取值,的每一个取值,对对 Y Y 所形成的分布确所形成的分布确 定其期望或均值,称定其期望或均值,称 为为 Y Y 的的条件期望或条件均条件期望或条件均 值,值,用用 表示。表示。注意注意:Y:Y的条件
11、期望是随的条件期望是随X X的变动而变动的的变动而变动的 YX明确几个概念明确几个概念(为深刻理解“回归”)第十一页,本课件共有105页12回归线回归线:对于每一个:对于每一个X的取值的取值 ,都有,都有Y的条件期望的条件期望 与与之之对对应应,代代表表Y的的条条件件期期望望的的点点的的轨轨迹迹形形成成的的直线或曲线称为回归线。直线或曲线称为回归线。回归函数回归函数:被解释变量:被解释变量Y的条件期望的条件期望 随随解释变量解释变量X的变化而有规律的变化而有规律的变化,如果把的变化,如果把Y的条件期的条件期望表现为望表现为 X 的某种函数的某种函数 ,这个函数称为回归函数。这个函数称为回归函数
12、。回归函数分为:总体回归函数和样本回归函数回归函数分为:总体回归函数和样本回归函数 X Y第十二页,本课件共有105页13每每月月家家庭庭可可支支配配收收入入X2000250030003500400045005000550060006500131215301631184320372277246929243515352113401619172619742210238828893338372139541400171317862006232525263090365038654108每每1548175018352265241926813156380240264345月月1688181418852367
13、252228873300408741654812家家173819851943248526653050332142984380庭庭180020412037251527993189365443124580消消19022186207826892887335338424413费费220021792713291335344074支支231222982898303837104165出出2316292331673834Y Y238730533310249831873510268932861591191520922586275430393396385340364148举例举例:假如已知由假如已知由100100
14、个家庭构成的总体的数个家庭构成的总体的数据据 (单位单位:元元)二、总体回归函数二、总体回归函数(PRF)第十三页,本课件共有105页14消费支出的条件期望与收入关系的图形消费支出的条件期望与收入关系的图形对于本例的总体,家庭消费支出的条件期望对于本例的总体,家庭消费支出的条件期望与家庭收入与家庭收入 基本是线性关系基本是线性关系,可以把家庭消费支出的可以把家庭消费支出的条件均值表示为家庭收入的线性函数:条件均值表示为家庭收入的线性函数:第十四页,本课件共有105页15 1.1.总体回归函数的概念总体回归函数的概念 前提:前提:假如已知假如已知所研究的经济现象的总体的被解释变量所研究的经济现象
15、的总体的被解释变量Y和解释变量和解释变量X的每个观测值的每个观测值(通常这是不可能的!)(通常这是不可能的!),那,那么,可以计算出总体被解释变量么,可以计算出总体被解释变量Y的条件期望的条件期望 ,并将其表现为解释变量并将其表现为解释变量X的某种函数的某种函数 这个函数称为这个函数称为总体回归函数(总体回归函数(PRF)本质本质:总体回归函数实际上表现的是特定总体中被解释变总体回归函数实际上表现的是特定总体中被解释变量随解释变量的变动而变动的某种规律性。量随解释变量的变动而变动的某种规律性。计量经济学的根本目的是要探寻变量间数量关系的规律计量经济学的根本目的是要探寻变量间数量关系的规律,也也
16、就要努力去寻求总体回归函数就要努力去寻求总体回归函数。第十五页,本课件共有105页16 条件期望条件期望表现形式表现形式例如例如Y的条件期望的条件期望 是解是解 释变量释变量X的线性函数,可表示为:的线性函数,可表示为:个别值个别值表现形式表现形式(随机设定形式)(随机设定形式)对于一定的对于一定的 ,Y的各个别值的各个别值 并不一定等于条件期望,而并不一定等于条件期望,而是分布在是分布在 的周围,若令各个的周围,若令各个 与条件期望与条件期望 的的偏差为偏差为 ,显然,显然 是个随机变量是个随机变量 则有则有 2.2.总体回归函数的表现形式总体回归函数的表现形式PRF第十六页,本课件共有10
17、5页作为总体运行的客观规律,总体回归函数是客观存在作为总体运行的客观规律,总体回归函数是客观存在的,但在实际的经济研究中总体回归函数通常是的,但在实际的经济研究中总体回归函数通常是未知未知的,的,只能根据经济理论和实践经验去只能根据经济理论和实践经验去设定设定。计量经济学研究中计量经济学研究中“计量计量”的根本目的就是要寻求总体的根本目的就是要寻求总体回归函数。回归函数。我们所设定的计量模型实际就是在设定总体回归函我们所设定的计量模型实际就是在设定总体回归函数的具体形式。数的具体形式。总体回归函数中总体回归函数中 Y Y 与与 X X 的关系可以是的关系可以是线性线性的,也可的,也可以是以是非
18、线性非线性的。的。173.3.如何理解总体回归函数如何理解总体回归函数第十七页,本课件共有105页18计量经济学中计量经济学中计量经济学中计量经济学中,线性回归模型的线性回归模型的线性回归模型的线性回归模型的“线性线性线性线性”有两种解释有两种解释有两种解释有两种解释:就变量而言就变量而言就变量而言就变量而言是线性的是线性的是线性的是线性的 Y Y Y Y的条件期望(均值)是的条件期望(均值)是的条件期望(均值)是的条件期望(均值)是X X X X的线性函数的线性函数的线性函数的线性函数 就参数而言就参数而言就参数而言就参数而言是线性的是线性的是线性的是线性的 Y Y Y Y的条件期望(均值)
19、是参数的条件期望(均值)是参数的条件期望(均值)是参数的条件期望(均值)是参数的线性函数的线性函数的线性函数的线性函数例如:例如:例如:例如:对变量、参数均为对变量、参数均为对变量、参数均为对变量、参数均为“线性线性线性线性”对参数对参数对参数对参数“线性线性线性线性”,对变量,对变量,对变量,对变量”非线性非线性非线性非线性”对变量对变量对变量对变量“线性线性线性线性”,对参数,对参数,对参数,对参数”非线性非线性非线性非线性”注意:注意:在计量经济学中,线性回归模型主要指在计量经济学中,线性回归模型主要指就参数而言就参数而言是是“线性线性”的的,因为只要对参数而言是线性的因为只要对参数而言
20、是线性的,都可以用类似的方法去估计其参数,都可以用类似的方法去估计其参数,都可以归于线性回归。都可以归于线性回归。“线性线性”的判断的判断第十八页,本课件共有105页概念概念 在总体回归函数中,各个在总体回归函数中,各个 的值与其条件期望的值与其条件期望 的偏差的偏差 有很重有很重要的意义。若只有要的意义。若只有 的影响的影响,与与 不应有偏差。若偏不应有偏差。若偏差差 存在,说明还有其他影响因素。存在,说明还有其他影响因素。实际代表了排除在模型以外的所有因素对实际代表了排除在模型以外的所有因素对 Y 的影响。的影响。性质性质 是其期望为是其期望为 0 有一定分布的随机变量有一定分布的随机变量
21、重要性:重要性:随机扰动项的性质决定着计量经济分析结随机扰动项的性质决定着计量经济分析结 果的性质和计量经济方法的选择果的性质和计量经济方法的选择19 三、随机扰动项三、随机扰动项第十九页,本课件共有105页 是是未知未知影响因素影响因素的代表的代表(理论的模糊性理论的模糊性)是是无法取得数据无法取得数据的已知影响因素的代表的已知影响因素的代表(数据欠缺数据欠缺)是是众多细小影响因素众多细小影响因素的综合代表的综合代表(非系统性影响非系统性影响)模型可能存在模型可能存在设定误差设定误差(变量、函数形式的设定)变量、函数形式的设定)模型中变量可能存在模型中变量可能存在观测误差观测误差(变量数据不
22、符合实际变量数据不符合实际)变量可能有内在变量可能有内在随机性随机性(人类经济行为的内在随机性人类经济行为的内在随机性)20引入随机扰动项引入随机扰动项 的原因的原因第二十页,本课件共有105页样本回归线:样本回归线:对于对于X的一定值,取得的一定值,取得Y的样本观测值,可计算其条件均值,的样本观测值,可计算其条件均值,样本观测值条件均值的轨迹,称为样本回归线。样本观测值条件均值的轨迹,称为样本回归线。样本回归函数:样本回归函数:如果把被解释变量如果把被解释变量Y的样本条件均值的样本条件均值 表示为解释变量表示为解释变量X的某种函数,的某种函数,这个函数称为样本回归函数(这个函数称为样本回归函
23、数(SRF)21XYSRF四、样本回归函数四、样本回归函数(SRF)第二十一页,本课件共有105页22 样本回归函数如果为线性函数,可表示为样本回归函数如果为线性函数,可表示为 其中:其中:是与是与 相对应的相对应的 Y 的样本条件均值的样本条件均值 和和 分别是样本回归函数的参数分别是样本回归函数的参数 个别值(实际值)形式:个别值(实际值)形式:被被解解释释变变量量Y的的实实际际观观测测值值 不不完完全全等等于于样样本本条条件件均均值值 ,二二者之差用者之差用 表示,表示,称为称为剩余项剩余项或或残差项残差项:则则 或或 样本回归函数的函数形式样本回归函数的函数形式条件均值形式:条件均值形
24、式:第二十二页,本课件共有105页样本回归线随抽样波动而变化样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回每次抽样都能获得一个样本,就可以拟合一条样本回归线,归线,(SRF不唯一不唯一)样本回归函数的函数形式样本回归函数的函数形式应与设定的总体回归函数的应与设定的总体回归函数的函数形式一致。函数形式一致。样本回归线只是样本条件均值的轨迹,还不是总体样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。回归线,它至多只是未知的总体回归线的近似表现。23样本回归函数样本回归函数的特点的特点SRF1SRF2 YX 第二十三页,本课件共有
25、105页 A X 24PRFSRF样本回归函数与总体回归函数的关系样本回归函数与总体回归函数的关系第二十四页,本课件共有105页 如果能够通过某种方式获得如果能够通过某种方式获得 和和 的数值,显然的数值,显然:和和 是对总体回归函数参数是对总体回归函数参数 和和 的估计的估计 是对总体条件期望是对总体条件期望 的估计的估计 在概念上类似总体回归函数中的在概念上类似总体回归函数中的 ,可视,可视 为对为对 的估计。的估计。25对比:对比:总体回归函数总体回归函数 样本回归函数样本回归函数对样本回归的理解对样本回归的理解第二十五页,本课件共有105页26 目的:计计量量经经济济分分析析的的目目标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二章 简单线性回归模型优秀PPT 第二 简单 线性 回归 模型 优秀 PPT
限制150内