小波分析及其应用(精)复习进程.ppt





《小波分析及其应用(精)复习进程.ppt》由会员分享,可在线阅读,更多相关《小波分析及其应用(精)复习进程.ppt(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小波分析及其应用(精)小波变换简介 1.1小波变换的理论基础小波变换的理论基础信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Motherwavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。2(a)正弦波曲线;(b)小波曲线34从小波和正弦波的形状可以看出,变化剧烈的信号,用不规则的小波进行分析比用平滑的正弦波更好,即用小波更能描述信号的局部特征。连续小波变换(Cont
2、inuousWaveletTransform,CWT)用下式表示:(1.1)式(1.1)表示小波变换是信号f(x)与被缩放和平移的小波函数()之积在信号存在的整个期间里求和的结果。CWT的变换结果是许多小波系数C,这些系数是缩放因子(scale)和平移(positon)的函数。5基本小波函数()的缩放和平移操作含义如下:(1)缩放。简单地讲,缩放就是压缩或伸展基本小波,缩放系数越小,则小波越窄,如图1.2所示。图1.2小波的缩放操作6(2)平移。简单地讲,平移就是小波的延迟或超前。在数学上,函数f(t)延迟k的表达式为f(t-k),如图1.3所示。图1.3小波的平移操作(a)小波函数(t);(
3、b)位移后的小波函数(t-k)7图1.4计算系数值C8图1.5计算平移后系数值C 9图1.6计算尺度后系数值C10图1.7小波分解示意图11图1.12多层小波重构示意图12小波的时间和频率特性小波的时间和频率特性运用小波基,可以提取信号中的“指定时间”和“指定频率”的变化。时间:提取信号中“指定时间”(时间A或时间B)的变化。顾名思义,小波在某时间发生的小的波动。频率:提取信号中时间A的比较慢速变化,称较低频率成分;而提取信号中时间B的比较快速变化,称较高频率成分。时间A时间B13多分辨度分析(多分辨度分析(MRA)1988年Mallat提出的多分辨度分析理论,统一了几个不相关的领域:包括语音
4、识别中的镜向滤波,图象处理中的金字塔方法,地震分析中短时波形处理等。当在某一个分辨度检测不到的现象,在另一个分辨度却很容易观察处理。例如:14 15 参考:M.Vetterli,”WaveletsandSubbandCoding“,PrenticeHallPTR,1995p.1116小波的小波的3 个特点个特点小波变换,既具有频率分析的性质,又能表示发生的时间。有利于分析确定时间发生的现象。(傅里叶变换只具有频率分析的性质)小波变换的多分辨度的变换,有利于各分辨度不同特征的提取(图象压缩,边缘抽取,噪声过滤等)小波变换比快速Fourier变换还要快一个数量级。信号长度为M时,Fourier变换
5、(左)和小波变换(右)计算复杂性分别如下公式:17小波基表示发生的时间和频率小波基表示发生的时间和频率“时频局域性”图解:Fourier变换的基(上)小波变换基(中)和时间采样基(下)的比较傅里叶变换(Fourier)基小波基时间采样基18 Haar小小波基母函数波基母函数(a)Haar“近似”基函数(b)Haar“细节”基函数低频滤波系数高频滤波系数H0=11qH1=1-1q=qq=q-q其中:19Haar小波的基函数小波的基函数第1行基函数是取平均(近似),第2-8行基函数是取变化(细节)。细节包括变化速率和发生的时间。H0=11qH1=1-1q尺度函数近似基函数小波函数细节基函数20小波
6、分析发展历史小波分析发展历史1807年Fourier提出傅里叶分析,1822年发表“热传导解析理论”论文1910年Haar提出最简单的小波1980年Morlet首先提出平移伸缩的小波公式,用于地质勘探。1985年Meyer和稍后的Daubeichies提出“正交小波基”,此后形成小波研究的高潮。1988年Mallat提出的多分辨度分析理论(MRA),统一了语音识别中的镜向滤波,子带编码,图象处理中的金字塔法等几个不相关的领域。21小波基可以通过给定滤波系数生成小波基可以通过给定滤波系数生成小波基(尺度函数和小波函数)可以通过给定滤波系数生成。有的小波基是正交的,有的是非正交的。有的小波基是对称
7、的,有的是非对称的。小波的近似系数和细节系数可以通过滤波系数直接导出,而不需要确切知道小波基函数,这是I.Daubechies等的重要发现,使计算简化,是快速小波分解和重建的基础。22小波基函数和滤波系数小波基函数和滤波系数(Haar-正交,对称正交,对称)“近似”基函数“反变换”低频和高频“滤波系数”“细节”基函数Haar小波“正变换”低频和高频“滤波系数”23小波基函数和滤波系数小波基函数和滤波系数(db 2-正交,不对称正交,不对称)“近似”基函数“细节”基函数db小波“反变换”低频和高频“滤波系数”“正变换”低频和高频“滤波系数”24小波基函数和滤波系数小波基函数和滤波系数(db 4-
8、正交,不对称正交,不对称)25小波基函数和滤波系数小波基函数和滤波系数(sym 4-正交,近似对称正交,近似对称)26小波基函数和滤波系数小波基函数和滤波系数(bior 2.4 双正交,对称双正交,对称)27小波基函数和滤波系数小波基函数和滤波系数(bior 6.8 双正交,对称双正交,对称)282 2、小波、小波分析分析在一维信号处理中的应用在一维信号处理中的应用小波变换小波变换就是将“原始信号s”变换成“小波系数w”,w=wa,wd包括近似(approximation)系数wa与细节(detail)系数wd近似系数wa-平均成分(低频)细节系数wd-变化成分(高频)29小波原始信号分解过程
9、:小波原始信号分解过程:原始信号s可分解成小波近似a与小波细节d之和。s=a+d小波系数w=wa,wd的分量,乘以基函数,形成小波分解:小波近似系数wa基函数A=近似分解a-平均小波细节系数wd基函数D=细节分解d-变化30小波分解和小波分解和小波基小波基小波基D小波基A原始信号小波系数wd小波系数wa正变换:原始信号在小波基上,获得“小波系数”分量反变换:所有“小波分解”合成原始信号例如:小波分解a=小波系数wa小波基A31离散小波变换公式离散小波变换公式正变换反变换其中:是小波基函数参考“数字图象处理”英文版,电子工业出版社,2002年(R.C.Gonzalaz,”DigitalImage
10、Processing”,p.375)信号s有M个样本,J级小波变换:小波分解小波系数32一维信号小波变换例子一维信号小波变换例子Haar小波,例子:16点信号:6 5 9 8 3 7 8 5 6 5 9 8 1 3 3 9 6 5 9 8 3 7 8 5 6 5 9 8 1 3 3 9通过MATLAB实现(wavemenu)波形图小波正变换:小波系数:小波近似系数(加);小波细节系数(减)小波反变换:可以由分解信号恢复原始信号。有2种:近似分解;细节分解33一维信号的二级小波变换系数一维信号的二级小波变换系数原始信号2级小波系数 w2=wa2,wd2,wd1*Haar是正交变换。除以常数,目的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分析 及其 应用 复习 进程

限制150内