提高数学课堂教学有效性的策略.ppt
《提高数学课堂教学有效性的策略.ppt》由会员分享,可在线阅读,更多相关《提高数学课堂教学有效性的策略.ppt(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、提高数学课堂教学有效性的策略 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望 全国中学青年数学教师优秀课评价标准全国中学青年数学教师优秀课评价标准 1.1.教学目的教学目的 知识深广度、技能训练、能力培养、思想品德、心理素质知识深广度、技能训练、能力培养、思想品德、心理素质 2.2.教材选择教材选择 与教学目的一致性、重视基础与创新、知识的应用、因材与教学目的一致性、重视基础与创新、知识的应用、因材施教、结合学生实际选择教材施教、结合学生实际选择教材 3.3.教学
2、过程教学过程 正确处理教与学的关系、创设教学情境、使学生认识数学正确处理教与学的关系、创设教学情境、使学生认识数学本质、引导学生积极思考、主动参与学习活动、培养创新精本质、引导学生积极思考、主动参与学习活动、培养创新精神实践能力、妥善处理反馈与调节、归纳与小结神实践能力、妥善处理反馈与调节、归纳与小结 【数学好课的标准数学好课的标准】4.4.教学手段教学手段 现代教学手段运用的必要性和有效性现代教学手段运用的必要性和有效性 5.5.教学方法教学方法 贯彻教学原则和学习理论的正确性和充分性、重视教学贯彻教学原则和学习理论的正确性和充分性、重视教学方法针对性和灵活性、学习方法指导的有效性方法针对性
3、和灵活性、学习方法指导的有效性 6.6.教师素养教师素养 语言、板书、观察、聆听、教态语言、板书、观察、聆听、教态好课的标准好课的标准教学目标恰当教学目标恰当教学内容充实教学内容充实教学方法灵活教学方法灵活教学气氛活跃教学气氛活跃教学效果显著教学效果显著教学过程合理教学过程合理好课的好课的标准标准深刻深刻活跃活跃扎实扎实创新创新 一、凸显数学本质一、凸显数学本质数学本质数学本质的内涵的内涵数学知识数学知识内在联系内在联系数学规律数学规律形成过程形成过程数学理性数学理性精神体验精神体验数学思想数学思想方法提炼方法提炼1、关于函数概念的理解、关于函数概念的理解说文解字:函说文解字:函信函,传递和交
4、流信息的书面信函,传递和交流信息的书面形式。引申为(有顺序的)对应关系。形式。引申为(有顺序的)对应关系。函数的来源:函数来源于运动,是应函数的来源:函数来源于运动,是应“科学的数科学的数学化学化”之所需。之所需。“数学从运动的研究中引出了一数学从运动的研究中引出了一个基本概念。在那以后的二百年里,这个概念在个基本概念。在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数几乎所有的工作中占中心位置,这就是函数或变量间的关系或变量间的关系的概念。的概念。”(MM克莱因)克莱因)【例例1】函数概念的教学函数概念的教学 2 2、函数概念的本质函数概念的本质一、运动变化一、运动变化 在
5、一个在一个变化变化过程中,有两个过程中,有两个变量变量二、联系对应二、联系对应 两个变量互相两个变量互相联系联系,一个变量变化,另一个变,一个变量变化,另一个变量也随着变化;量也随着变化;“函数函数”不是一个不是一个“数数”,而是,而是一个对应关系。一个对应关系。自变量自变量x x有一个确定的值,函数有一个确定的值,函数y y有有唯一唯一确定的确定的值和它值和它对应对应。教学的核心任务:教学的核心任务:让学生体验让学生体验“一个量随着另一一个量随着另一个量的变化而变化个量的变化而变化”的过程的过程只有只有数字、图形数字、图形游戏是办不到的。游戏是办不到的。3、函数概念的教学要点、函数概念的教学
6、要点为学生铺设概括函数概念的通道;为学生铺设概括函数概念的通道;精选实际例子精选实际例子从实例出发,在函数概念的引从实例出发,在函数概念的引入、表示、性质和应用等阶段都要注意使用实际入、表示、性质和应用等阶段都要注意使用实际例子,为学生提供理解函数概念的例子,为学生提供理解函数概念的“参照物参照物”。一个好例子胜过一千次说教。一个好例子胜过一千次说教。不在字面含义、形式化不在字面含义、形式化“应用应用”等方面纠缠,多等方面纠缠,多让学生用函数观点解释具体问题。让学生用函数观点解释具体问题。围绕运动变化、变量、一个量随另一个量的变化围绕运动变化、变量、一个量随另一个量的变化而变化等,以实例为载体
7、开展教学,加强思想方而变化等,以实例为载体开展教学,加强思想方法、函数建模等。法、函数建模等。凸显数学本质的方法 1.1.不断提升不断提升 2.2.不同角度不同角度 实物实物自然语言自然语言符号符号引入引入探究探究原理原理应用应用小结小结理解理解图形图形 二、展开学习过程二、展开学习过程数学学习数学学习过程的内容过程的内容概念学习过程概念学习过程原理学习过程原理学习过程问题解决过程问题解决过程思想方法思想方法形成过程形成过程知识结构知识结构形成过程形成过程技能形成过程技能形成过程一、数学概念学习的本质及概念教学的要求一、数学概念学习的本质及概念教学的要求 1 1、概念学习的本质是概括、概念学习
8、的本质是概括 概括出数学中一类事物对象的概括出数学中一类事物对象的共同本质属性,共同本质属性,正确区分事物的本质属性与非本质属性,正确区分事物的本质属性与非本质属性,正确正确形成数学概念形成数学概念的内涵和外延。的内涵和外延。2、数学概念学习的内容通常包括、数学概念学习的内容通常包括(1)数学概念的名称;()数学概念的名称;(2)数学概念的定义;)数学概念的定义;(3)数学概念的例子(正例、反例);)数学概念的例子(正例、反例);(4)数学概念的属性应用。)数学概念的属性应用。【概念学习过程概念学习过程】对于数学概念的教学设计,应根据学生已对于数学概念的教学设计,应根据学生已有的数学知识经验和
9、实际生活经历,设计学生熟有的数学知识经验和实际生活经历,设计学生熟悉的、感兴趣的问题情景或事例,悉的、感兴趣的问题情景或事例,充分展现概念充分展现概念形成的过程。形成的过程。通过问题讨论、事例分析,引导学生在具体通过问题讨论、事例分析,引导学生在具体感知的基础上进行抽象概括,感知的基础上进行抽象概括,要深入剖析概念的要深入剖析概念的本质,阐明概念之间的相互关系和区别,注意新本质,阐明概念之间的相互关系和区别,注意新旧概念之间的联系和比较;要重视对概念的多角旧概念之间的联系和比较;要重视对概念的多角度理解从而使学生逐步形成新的数学概念。度理解从而使学生逐步形成新的数学概念。3 3、课程标准课程标
10、准对数学概念教学的具体要求对数学概念教学的具体要求:获得概念的获得概念的两种方式两种方式形成方式形成方式同化方式同化方式二、概念学习的心理学基础二、概念学习的心理学基础1.概念的形成概念的形成 概念形成就是让学生从大量同类事物的不同例证概念形成就是让学生从大量同类事物的不同例证中独立发现同类事物的本质属性,从而形成概念。中独立发现同类事物的本质属性,从而形成概念。因此,数学概念的形成实质上是抽象出数学对象的因此,数学概念的形成实质上是抽象出数学对象的共同本质特征的过程。可概括如下:共同本质特征的过程。可概括如下:(1)辨别辨别各种刺激模式,通过比较,在知觉水平上各种刺激模式,通过比较,在知觉水
11、平上进行分析、辨认,根据事物的外部特征进行概括。进行分析、辨认,根据事物的外部特征进行概括。(2)分化分化出各种刺激模式的属性。出各种刺激模式的属性。(3)抽象抽象出各个刺激模式的共同属性。出各个刺激模式的共同属性。(4)在特定的情境中检验假设,)在特定的情境中检验假设,确认确认关键属性。关键属性。(5)概括概括,形成概念。,形成概念。(6)用习惯的形式)用习惯的形式符号表示符号表示新概念。新概念。概念形成的心理过程概念形成的心理过程辨别刺激模式找出共同属性形成概念确认本确认本质属性质属性比较、类比比较、类比抽象、抽象、检验检验概括概括【“函数函数”概念的形成过程概念的形成过程】:1、观察实例
12、,写出变量间的关系表达式:、观察实例,写出变量间的关系表达式:(1)以每小时)以每小时80千米的速度匀速行使的汽车,所驶千米的速度匀速行使的汽车,所驶过的路程和时间过的路程和时间(2)由某一天气温变化的曲线所揭示的气温和时刻)由某一天气温变化的曲线所揭示的气温和时刻(3)用表格给出的某水库的贮水量与水深。)用表格给出的某水库的贮水量与水深。2、找出上例中两变量之间关系的共同本质、找出上例中两变量之间关系的共同本质3、辨别正反例,找出本质属性(一对一、多对一)、辨别正反例,找出本质属性(一对一、多对一)4、概括出函数定义、概括出函数定义5、练习巩固成形、练习巩固成形 【教学过程中需注意教学过程中
13、需注意】:(1)提供的刺激模式应该是)提供的刺激模式应该是正例正例,而且数量要恰当;,而且数量要恰当;(2)注意选择那些刺激)注意选择那些刺激强度适当强度适当、变化性大变化性大和和新颖新颖有趣有趣的例子;的例子;(3)让学生进行)让学生进行充分自主充分自主的活动,使他们经历概念的活动,使他们经历概念产生的过程,了解概念产生的条件,把握概念形成产生的过程,了解概念产生的条件,把握概念形成的规律;的规律;(4)在确认了事物的关键属性,概括成概念以后,)在确认了事物的关键属性,概括成概念以后,教师应采取适当措施,教师应采取适当措施,使学生认知结构中的新旧概使学生认知结构中的新旧概念分化,以免造成新旧
14、概念的混淆,念分化,以免造成新旧概念的混淆,新概念被旧概新概念被旧概念所湮没;念所湮没;(5)必须使新概念纳入到已有的概念系统中去,)必须使新概念纳入到已有的概念系统中去,使新概念与认知结构中已有的起固着点作用使新概念与认知结构中已有的起固着点作用的相关概念的相关概念建立建立起起实质实质的和的和非人为非人为的的联系联系;(6)教师的)教师的语言中介语言中介作用很大,因为教师的语作用很大,因为教师的语言引导可以使学生更加有的放矢地对概念的言引导可以使学生更加有的放矢地对概念的具体事例进行分析、归纳和概括;具体事例进行分析、归纳和概括;2.2.概念的同化概念的同化 概念同化的学习形式是利用学生认知
15、结构中的原概念同化的学习形式是利用学生认知结构中的原有概念,以定义的方式直接向学生揭示概念的本质有概念,以定义的方式直接向学生揭示概念的本质属性。属性。由奥苏伯尔的有意义接受学习理论可知,要使学由奥苏伯尔的有意义接受学习理论可知,要使学生有意义地同化新概念,必须:生有意义地同化新概念,必须:第一第一,新概念具有,新概念具有逻辑意义逻辑意义;第二第二,学生的认知结,学生的认知结构中构中具备具备同化新概念的同化新概念的适当知识适当知识;第三第三,学生,学生积极积极主动主动地使这种具有潜在意义的新概念与他认知结构地使这种具有潜在意义的新概念与他认知结构中的有关观念发生中的有关观念发生相互作用相互作用
16、,改造旧知识,使新概,改造旧知识,使新概念与已有认知结构中的相关知识进一步分化和融会念与已有认知结构中的相关知识进一步分化和融会贯通。贯通。【概念同化的阶段概念同化的阶段】(1)揭示揭示概念的概念的关键属性关键属性,给出定义、名称和符号;,给出定义、名称和符号;(2)对概念进行特殊的)对概念进行特殊的分类分类,讨论这个概念所包含,讨论这个概念所包含的各种特例,突出概念的本质特征;的各种特例,突出概念的本质特征;(3)使新概念与已有认知结构中的有关观念建立联)使新概念与已有认知结构中的有关观念建立联系,把新观念纳入到已有概念体系中,系,把新观念纳入到已有概念体系中,同化同化新概念;新概念;(4)
17、用肯定例证和否定例证让学生辨认,使新概念)用肯定例证和否定例证让学生辨认,使新概念与已有认知结构中的相关概念与已有认知结构中的相关概念分化分化;(5)把新概念纳入到相应的概念体系中,使有关概)把新概念纳入到相应的概念体系中,使有关概念念融会贯通融会贯通,组成一个整体。,组成一个整体。概念同化的心理过程概念同化的心理过程阅读定义以旧概念来明确定义的内涵和外延区分和联系新旧概念【如如“一次函数一次函数”的概念的概念】给出名称、定义、符号:函数给出名称、定义、符号:函数特例特例:等等把一次函数与函数概念、一次多项式概念等作把一次函数与函数概念、一次多项式概念等作比较比较用肯定、否定用肯定、否定例证例
18、证让学生让学生辨认辨认:【教学过程中要注意教学过程中要注意】:(1)同化方式学习概念,实际上是用演绎方式)同化方式学习概念,实际上是用演绎方式来理解和掌握概念。因为它是从抽象定义出来理解和掌握概念。因为它是从抽象定义出发来学习的,所以应注意发来学习的,所以应注意及时利用实例,及时利用实例,使使抽象概念获得具体例证的支持;抽象概念获得具体例证的支持;(2)学习中必须经过)学习中必须经过概念分类概念分类这一步,使学生这一步,使学生从外延角度进一步对概念进行理解。从外延角度进一步对概念进行理解。(3)为学生及时提供应用概念进行)为学生及时提供应用概念进行推理论证推理论证的的机会,在应用中强化概念,以
19、防止由于没有机会,在应用中强化概念,以防止由于没有经历概念形成的原始过程而出现的概念加工经历概念形成的原始过程而出现的概念加工不充分、理解不深刻的情况;不充分、理解不深刻的情况;(4)一定要将所学概念)一定要将所学概念纳入纳入到到已有认知结构已有认知结构中,中,形成概念系统。形成概念系统。三、数学概念教学的基本范式三、数学概念教学的基本范式 设置情境设置情境探究属性探究属性概念建构概念建构定义分析定义分析判断举例判断举例概念运用概念运用概念联系概念联系1、教学流程:、教学流程:函数的概念函数的概念1.1.创设情境创设情境 提出匀速运动、电影票价、弹簧长度、圆面积、长方提出匀速运动、电影票价、弹
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 提高 数学 课堂教学 有效性 策略
限制150内