湖北省武汉市部分重点中学2022-2023学年高二上学期期中联考数学试卷含答案.pdf
《湖北省武汉市部分重点中学2022-2023学年高二上学期期中联考数学试卷含答案.pdf》由会员分享,可在线阅读,更多相关《湖北省武汉市部分重点中学2022-2023学年高二上学期期中联考数学试卷含答案.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1武汉市部分重点中学20222023 学年度上学期期中联考武汉市部分重点中学20222023 学年度上学期期中联考高二数学试卷高二数学试卷考试时间:2022 年 11 月 9 日下午 15:0017:00试卷满分:150 分 祝考试顺利 注意事项:考试时间:2022 年 11 月 9 日下午 15:0017:00试卷满分:150 分 祝考试顺利 注意事项:1答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置.2选择题的作答:选出答案后,用 2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改
2、动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内.答在试题卷上或答题卷指定区域外无效.4考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来.一、选择题:本题共一、选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线220 xy在x轴上的截距是A.1B.1C.2D.22.双曲线22:14xCy的焦点坐标是A.(3,0)B.(0,3)C.(5,0)D.(0,5)3
3、已知(1,0,1)a,(2,1,1)b,则向量a与b的夹角为A.6B.3C.23D.564.若曲线221:650Cxyx与曲线2:()0Cy ymxm有四个不同的交点,则实数m的取值范围是A.33(,)33B.33(,0)(0,)33C.33,33D.33(,)(,)33 25.对于直线,m n和平面,,的一个充分条件是A.mn,m,nB.mn,m,nC.mn,m,nD.mn,n,m6.已知双曲线2222:1(0,0)xyCabab的左、右焦点分别为12FF,过1F的直线与C的两条渐近线分别交于AB,两点,若A为线段1BF的中点,且12BFBF,则C的离心率为A.3B.2C.31D.37.已知
4、点P在直线2yx上运动,点E是圆221xy上的动点,点F是圆2(6)x2(5)9y 上的动点,则PFPE的最大值为A.6B.7C.8D.98.在正四面体DABC中,点E在棱AB上,满足2AEEB,点F为线段AC上的动点,则A.存在某个位置,使得DEBFB.存在某个位置,使得4FDBC.存在某个位置,使得直线DE与平面DBF所成角的正弦值为714D.存在某个位置,使得平面DEF与平面DAC夹角的余弦值为32二、选择题:本题共二、选择题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.在每小题给出的四个选项中,有多项在每小题给出的四个选项中,有多项符合题目要求,全部选对的得符合
5、题目要求,全部选对的得 5 分,部分选对的得分,部分选对的得 2 分,有选错的得分,有选错的得 0 分分.9.方程222+210 xyaxaya 表示圆,则实数a的可能取值为A.4B.2C.0D.2 10.若直线m被两平行直线1:330lxy与2:33 30lxy所截得的线段长为6,则直线m的倾斜角可以是A.30B.75C.135D.165311.已知椭圆2212516xy,12,F F分别为它的左、右焦点,,A B分别为它的左、右顶点,点P是椭圆上的一个动点,下面结论中正确的有A.12PFPF 的最小值为 8B.12cosFPF的最小值为725C.若123FPF,则21PFF的面积为16 3
6、3D.直线PA与直线PB斜率乘积为定值162512.如图,已知正方体1111ABCDABC D的棱长为 1,点M为棱AB的中点,点P在侧面11BCC B及其边界上运动,则下列选项中正确的是A.存在点P满足15PMPDB.存在点P满足12D PMC.满足1APD M的点P的轨迹长度为32D.满足1MPD M的点P的轨迹长度为24三、填空题:本题共三、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.13.若方程222xky表示焦点在y轴上的椭圆,则实数k的取值范围是.14.过点(4,3)P做圆22:4O xy的两条切线,切点分别为,M N,则MN.15.两条异面直线,a
7、 b所成角为60,在直线,a b上分别取点,A E和点,A F,使AAa,且AAb.已知2AE,3AF,5EF,则线段AA的长为.16.城市的许多街道是相互垂直或平行的,因此乘坐出租车时往往不能沿直线到达目的地,只能按直角拐弯的方式行进.在平面直角坐标系中,定义1122(,),(,)P x yQ xy之间的“出租车距离”为1212(,)d P Qxxyy.已知(6,1),(3,3),(2,1)ABC,则到点,A B“距离”相等的点的轨迹方程为,到,A B C三点“距离”相等的点的坐标为.4三、解答题:共三、解答题:共 7070 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证
8、明过程或演算步骤.17.(10 分)已知双曲线C的焦点在x轴上,焦距为4,且它的一条渐近线方程为33yx.(1)求C的标准方程;(2)若直线1:12l yx与双曲线C交于,A B两点,求AB.18.(12 分)已知ABC的顶点(5,1)A,重心(3,3)G.(1)求线段BC的中点坐标;(2)记ABC的垂心为H,若BH、都在直线yx 上,求H的坐标.19.(12 分)如图,四棱锥PABCD中,底面ABCD是直角梯形,ABCD,90BAD,222PDDCBCPAAB,PDCD.(1)求证:PA 平面ABCD;(2)求直线BD与平面BPC所成角的正弦值.20.(12 分)如图,已知圆22:1O xy
9、,点P为直线23 50 xy上一动点,过点P作圆O的切线,切点分别为,M N,且两条切线,PM PN与x轴分别交于,A B两点.(1)当P在直线yx上时,求PAPB的值;(2)当P运动时,直线MN是否过定点?若是,求出该定点坐标;若不是,请说明理由.521.(12 分)已知正四棱柱1111ABCDABC D中,1AB,13AA,E点为棱11AB中点.(1)求二面角1AECC的余弦值;(2)连接EC,若P点为直线EC上一动点,求当P点到直线1BB距离最短时,线段EP的长度.22.(12 分)已知椭圆2222:1(0)xyCabab过点3(3,)2,过其右焦点F且垂直于x轴的直线交椭圆于,A B两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 武汉市 部分 重点中学 2022 2023 学年 高二上 学期 期中 联考 数学试卷 答案
限制150内