山东大学网络教育《线性代数(1-3)》(共9页).doc
《山东大学网络教育《线性代数(1-3)》(共9页).doc》由会员分享,可在线阅读,更多相关《山东大学网络教育《线性代数(1-3)》(共9页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上线性代数模拟题(一)一单选题. 1.下列( A )是4级偶排列(A) 4321; (B) 4123; (C) 1324; (D) 23412. 如果,那么( D )(A) 8; (B) ; (C) 24; (D) 3. 设与均为矩阵,满足,则必有( C )(A)或; (B);(C)或; (D)4. 设为阶方阵,而是的伴随矩阵,又为常数,且,则必有等于( B )(A); (B); (C); (D)5.向量组线性相关的充要条件是( C )(A)中有一零向量(B) 中任意两个向量的分量成比例(C) 中有一个向量是其余向量的线性组合(D) 中任意一个向量都是其余向量的线性组合
2、6. 已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为( B )(A) ; (B) (C) ; (D) 7. 2是A的特征值,则(A2/3)1的一个特征值是(B)(a)4/3 (b)3/4 (c)1/2 (d)1/48. 若四阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-I|=(B)(a)0 (b)24 (c)60 (d)1209. 若是( A ),则必有(A)对角矩阵; (B) 三角矩阵; (C) 可逆矩阵; (D) 正交矩阵10. 若为可逆矩阵,下列( A )恒正确 (A); (B) ; (C) ; (D) 二计算题或证明题1. 设
3、矩阵 (1)当k为何值时,存在可逆矩阵P,使得P1AP为对角矩阵?(2)求出P及相应的对角矩阵。参考答案:2. 设n阶可逆矩阵A的一个特征值为,A*是A的伴随矩阵,设|A|=d,证明:d/是A*的一个特征值。3. 当取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解 参考答案:. 当时有唯一解: 当时,有无穷多解: 当时,无解。4. 求向量组的秩及一个极大无关组,并把其余向量用极大无关组线性表示参考答案:5. 若是对称矩阵,是反对称矩阵,试证:是对称矩阵参考答案:线性代数模拟题(二)一单选题. 1. 若是五阶行列式的一项,则、的值及该项符号为( A )(A),符号为负; (B)
4、 ,符号为正; (C) ,符号为负; (D) ,符号为正2. 下列行列式( A )的值必为零(A) 阶行列式中,零元素个数多于个;(B) 阶行列式中,零元素个数小于个;(C) 阶行列式中,零元素个数多于个; (D) 阶行列式中,零元素的个数小于个3. 设,均为阶方阵,若,则必有( D )(A); (B); (C); (D)4. 设与均为矩阵,则必有( C )(A);(B);(C);(D)5. 如果向量可由向量组线性表出,则( D/A )(A) 存在一组不全为零的数,使等式成立(B) 存在一组全为零的数,使等式成立(C) 对的线性表示式不唯一(D) 向量组线性相关6. 齐次线性方程组有非零解的充
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数1-3 山东大学 网络 教育 线性代数
限制150内