《高中数学知识点总结2021.docx》由会员分享,可在线阅读,更多相关《高中数学知识点总结2021.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学知识点总结2021高中数学知识点总结11、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(
2、1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂
3、直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面和相交,交线是a,记作=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.它可以判断点在直线上,即证若干个点共
4、线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学知识点总结2一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关1.从散点图上看,如果这
5、些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当r0时,表明两个变量正相关;当r0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.高中数学知
6、识点总结3函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定
7、义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)y=f(x+a),y=f(x)+b注意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。()会结合向量的平移,理解按照向量(m,n)平移的意义。对称变换y=f(x)y=f(-x),关于y轴对称y=f(x)y=-f(x),关于x轴对称y=f(x)y=
8、f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)y=f(x),y=f(x)y=Af(x+)具体参照三角函数的图象变换。一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;高中数学知识点总结4在中国古代把数学叫算术,又称算学,最后才改为数学。1.任意角(1)角的分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:终边与角相同的角可写成+k360(kZ).(3)弧度制:1弧度的角:把
9、长度等于半径长的弧所对的圆心角叫做1弧度的角.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|=,l是以角作为圆心角时所对圆弧的长,r为半径.用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.弧度与角度的换算:360弧度;180弧度.弧长公式:l=|r,扇形面积公式:S扇形=lr=|r2.2.任意角的三角函数(1)任意角的三角函数定义:设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.(2)三角函数在各象限内的
10、符号口诀是:一全正、二正弦、三正切、四余弦.3.三角函数线设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.高中数学知识点总结51.求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为
11、增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。利用导数求函数单调性的基本步骤:求函数yf(x)的定义域;求导数f(x);解不等式f(x)0,解集在定义域内的不间断区间为增区间;解不等式f(x)0,解集在定义域内的不间断区间为减区间。反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);(2)如果函数yf(x)在区间(a,b)上为减函数,
12、则f(x)0(其中使f(x)0的x值不构成区间);(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。2.求函数的极值:设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0),则称f(x0)是函数f(x)的极小值(或极大值)。可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:(4)检查f(x)的符号并由表格判断极值。3.求函数的值与最小
13、值:如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。求函数f(x)在区间a,b上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间a,b上的值与最小值。4.解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。f(x)(xA)的值域是a,b时,不等式f(x)0恒成立的充要条件是f(x)max0,即b0;不等式f(x)0恒成立的充要条件是f(x)min0,即a0。f(x)(xA)的值域是(a,b)时,不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。5.导数在实际生活中的应用:实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。
限制150内