浙江大学研究生人工智能引论课件.ppt
《浙江大学研究生人工智能引论课件.ppt》由会员分享,可在线阅读,更多相关《浙江大学研究生人工智能引论课件.ppt(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、浙江大学研究生浙江大学研究生人工智能引论人工智能引论课件课件徐从富徐从富(Congfu Xu)PhD,Associate Professor Email:Institute of Artificial Intelligence,College of Computer Science,Zhejiang University,Hangzhou 310027,P.R.ChinaSeptember 11,2005第一稿第一稿Oct.8,2006第二次修改稿第二次修改稿第七讲 贝叶斯网络初步(Chapter7 Bayesian Networks)内容提纲内容提纲n何谓贝叶斯网络?n贝叶斯网络的语义n条件
2、分布的有效表达n贝叶斯网络中的精确推理n贝叶斯网络中的近似推理n课后习题、编程实现及研读论文7.1 何谓贝叶斯网络?何谓贝叶斯网络?A.贝叶斯网络的由来B.贝叶斯网络的定义C.贝叶斯网络的别名D.独立和条件独立E.贝叶斯网络示例“Above all else,guard your heart,for it is the wellspring of life.”from Proverbs 4:23 NIVA.贝叶斯网络的由来贝叶斯网络的由来 n全联合概率计算复杂性十分巨大n朴素贝叶斯太过简单n现实需要一种自然、有效的方式来捕捉和推理不确定性知识n变量之间的独立性和条件独立性可大大减少为了定义全联
3、合概率分布所需的概率数目B.贝叶斯网络的定义贝叶斯网络的定义 n是一个有向无环图(DAG)n随机变量集组成网络节点,变量可离散或连续n一个连接节点对的有向边或箭头集合n每 节 点 Xi都 有 一 个 条 件 概 率 分 布 表:P(Xi|Parents(Xi),量化其父节点对该节点的影响C.贝叶斯网络的别名贝叶斯网络的别名 n信念网(Belief Network)n概率网络(Probability Network)n因果网络(Causal Network)n知识图(Knowledge Map)n图模型(Graphical Model)或概率图模型(PGM)n决策网络(Decision Netw
4、ork)n影响图(Influence Diagram)D.独立和条件独立独立和条件独立WeatherCavityCatchToothachen Weather和其它3个变量相互独立n 给定Cavity后,Toothache和Catch条件独立E.贝叶斯网络示例贝叶斯网络示例BurglaryEarthquakeMaryCallsJohnCallsAlarm B EP(A)t t t f f t f f0.950.940.290.001 AP(J)t f0.900.05 AP(M)t f0.700.01P(B)0.001P(E)0.0027.2 贝叶斯网络的语义贝叶斯网络的语义n贝叶斯网络的两种含
5、义贝叶斯网络的两种含义n对联合概率分布的表示 构造网络n对条件依赖性语句集合的编码 设计推理过程n贝叶斯网络的语义贝叶斯网络的语义P(x1,.,xn)=P(x1|parent(x1).P(xn|parent(xn)贝叶斯网络的语义公式计算示例:贝叶斯网络的语义公式计算示例:n试计算:报警器响了,但既没有盗贼闯入,也没有发生地震,同时John和Mary都给你打电话的概率。n解:P(j,m,a,b,e)=P(j|a)P(m|a)P(a|b,e)P(b)P(e)=0.90.70.0010.9990.998=0.00062 =0.062%贝叶斯网络的特性贝叶斯网络的特性:n作为对域的一种完备而无冗余的
6、表示,贝叶斯网络比全联合概率分布紧凑得多nBN的紧凑性是局部结构化局部结构化(Locally structured,也称稀疏稀疏,Sparse)系统一个非常普遍特性的实例nBN中每个节点只与数量有限的其它节点发生直接的直接的相互作用n假设节点数n=30,每节点有5个父节点,则BN需30 x25=960个数据,而全联合概率分布需要230=10亿个!贝叶斯网络的构造原则贝叶斯网络的构造原则:n首先,添加“根本原因根本原因”节点n然后,加入受它们直接影响的变量直接影响的变量n依次类推,直到叶节点叶节点,即对其它变量没有直接因果影响的节点n两节点间的有向边的取舍原则:更高精度概率的重要性与指定额外信息
7、的代价的折衷n“因果模型”比“诊断模型”需要更少的数据,且这些数据也更容易得到贝叶斯网络中的条件独立关系:贝叶斯网络中的条件独立关系:n给定父节点,一个节点与它的非后代节点非后代节点是条件独立的n给定一个节点的父节点、子节点以及子节点的父节点马尔可夫覆盖马尔可夫覆盖(Markov blanket),这个节点和网络中的所有其它节点是条件独立的“But his delight is in the law of the LORD,and on his law he meditates day and night.”From Psalms 1:2 NIVU1UmXZ1jZnjY1Yn【说明】:给定节点
8、X的父节点U1.Um,节点X与它的非后代节点(即Zij)是条件独立的。U1UmXZ1jZnjY1Yn【说明】:给定马尔可夫覆盖(两圆圈之间的区域),节点X和网络中所有其它节点都是条件独立的。7.3 条件概率分布的有效表达条件概率分布的有效表达 Cold Flu MalariaP(Fever)P(Fever)F F F F F T F T F F T T T F F T F T T T F T T T0.00.90.80.980.40.940.880.9881.00.10.20.02=0.2 X 0.10.60.06=0.6 X 0.10.12=0.6 X 0.20.012=0.6 X 0.2
9、X 0.1已知:P(fever|cold,flu,malaria)=0.6 P(fever|cold,flu,malaria)=0.2 P(fever|cold,flu,malaria)=0.1,可利用“噪声或噪声或”(Noisy-OR)关系得到下表:包含连续变量的贝叶斯网络包含连续变量的贝叶斯网络Hybrid BNSubsidyHarvestBuysCost S HP(C)t h f h高斯分布高斯分布高斯分布高斯分布 CP(B)c S型函数型函数P(S)xP(H)高斯分布高斯分布离散随机变量:离散随机变量:Subsidy,Buys;连续随机变量:连续随机变量:Harvest,Cost.线性
10、高斯分布:nP(c|h,subsidy)=N(ath+bt,t2)(c)=1/(t21/2)e 1/2c-(ath+bt)/tnP(c|h,subsidy)=N(afh+bf,f2)(c)=1/(f21/2)e 1/2c-(afh+bf)/t S型函数(Sigmoid function)np(buys|Cost=c)=1/1+exp-2(-u+)/7.4 贝叶斯网络中的精确推理贝叶斯网络中的精确推理变量分类:n证据变量集E 特定事件e,n查询变量Xn非证据变量集 Y隐变量(Hidden variable)n全部变量的集合U=x E Y(1)通过枚举进行推理)通过枚举进行推理BurglaryEa
11、rthquakeMaryCallsJohnCallsAlarm B EP(A)t t t f f t f f0.950.940.290.001 AP(J)t f0.900.05 AP(M)t f0.700.01P(B)0.001P(E)0.002n已知,一个事件e=JohnCalls=true,and MaryCalls=true,试问出现盗贼的概率是多少?n解:解:P(X|e)=P(X,e)=yP(X,e,y)而P(X,e,y)可写成条件概率乘积的形式。因此,在贝叶斯网络中可通过计算条件概率的乘积并求和来回答查询。P(Burgary|JohnCalls=true,MaryCalls=true
12、)简写为:P(B|j,m)=P(B,j,m)=eaP(B,e,a,j,m)=ea P(b)P(e)P(a|b,e)P(j|a)P(m|a)=P(b)e P(e)a P(a|b,e)P(j|a)P(m|a)+P(b)0.01P(e)0.002P(e)0.998P(a|b,e)0.95P(a|b,e)0.05P(a|b,e)0.94P(a|b,e)0.06P(m|a)0.70P(j|a)0.90P(j|a)0.05P(j|a)0.90P(j|a)0.05P(m|a)0.70P(m|a)0.01P(m|a)0.01P(b|j,m)的自顶向下的计算过程nP(B|j,m)=P(B,j,m)=eaP(B,
13、e,a,j,m)=ea P(b)P(e)P(a|b,e)P(j|a)P(m|a)=P(b)e P(e)a P(a|b,e)P(j|a)P(m|a)=0.0010.002(0.950.90.7+0.050.05 0.01)+0.998 (0.94 0.9 0.7+0.06 0.05 0.01)=0.00059224+P(b)0.999P(e)0.002P(e)0.998P(a|b,e)0.29P(a|b,e)0.71P(a|b,e)0.001P(a|b,e)0.999P(m|a)0.70P(j|a)0.90P(j|a)0.05P(j|a)0.90P(j|a)0.05P(m|a)0.70P(m|a
14、)0.01P(m|a)0.01P(b|j,m)的自顶向下的计算过程nP(B|j,m)=P(B,j,m)=eaP(B,e,a,j,m)=ea P(b)P(e)P(a|b,e)P(j|a)P(m|a)=P(b)e P(e)a P(a|b,e)P(j|a)P(m|a)=0.9990.002(0.290.90.7+0.710.05 0.01)+0.998 (0.001 0.9 0.7+0.999 0.05 0.01)=0.0014919因此,P(B|j,m)=即在John和Mary都打电话的条件下,出现盗贼的概率约为28%。【课后习题1】国家政策国家政策(C)学校政策学校政策(U)身体状况身体状况差(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 大学研究生 人工智能 引论 课件
限制150内