全等三角形全章预习复习与-巩固(基础)入门知识讲解.doc
《全等三角形全章预习复习与-巩固(基础)入门知识讲解.doc》由会员分享,可在线阅读,更多相关《全等三角形全章预习复习与-巩固(基础)入门知识讲解.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、#*全等三角形全章复习与巩固(基础)全等三角形全章复习与巩固(基础)【学习目标学习目标】 1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式; 3会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明. 【知识网络知识网络】【要点梳理要点梳理】 【高清课堂:高清课堂:388614388614 全等三角形单元复习,知识要点全等三角形单元复习,知识要点】 要点一、全等三角形的判定与性质要点一、全等三角形的判定与性质要点二、全等三角形的要点二、全等三角
2、形的 证明思路证明思路SASHLSSSAASSASASAAASASAAAS 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质要点三、角平分线的性质 1.1.角的平分线的性质定理角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.一般三角形直角三角形判定边角边(SAS) 角边角(ASA) 角角边(AAS) 边边边(SSS)两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL)性质对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对
3、应边相等#*2.2.角的平分线的判定定理角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上. 3.3.三角形的角平分线三角形的角平分线三角形角平分线交于一点,且到三边的距离相等. 4.4.与角平分线有关的辅助线与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 要点四、全等三角形证明方法要点四、全等三角形证明方法 全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、 相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等 三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直
4、线位置关系等常见的几 何问题.可以适当总结证明方法. 1 1 证明线段相等的方法:证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等. (2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等. (3) 等式性质. 2 2 证明角相等的方法:证明角相等的方法: (1) 利用平行线的性质进行证明. (2) 证明两个角所在的两个三角形全等. (3) 利用角平分线的判定进行证明. (4) 同角(等角)的余角(补角)相等. (5) 对顶角相等. 3 3 证明两条线段的位置关系(平行、垂直)的方法;证明两条线段的位置关系(平行、垂直)的方法; 可通过证明两个三角形全等,得到对应角相等,再
5、利用平行线的判定或垂直定义证明. 4 4 辅助线的添加辅助线的添加: : (1)作公共边可构造全等三角形; (2)倍长中线法; (3)作以角平分线为对称轴的翻折变换全等三角形; (4)利用截长(或补短)法作旋转变换的全等三角形. 5.5. 证明三角形全等的思维方法证明三角形全等的思维方法: : (1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发 现两条线段和两个角所在的两个三角形及它们全等的条件. (2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据 图形的其它性质或先证明其他的两个三角形全等以补足条件. (3)如果现有图形中的任何两个三角
6、形之间不存在全等关系,此时应添置辅助线,使之 出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题典型例题】类型一、全等三角形的性质和判定类型一、全等三角形的性质和判定1、 (2015西城区模拟)问题背景: (1)如图 1:在四边形 ABCD 中,AB=AD,BAD=120,B=ADC=90E,F 分别是 BC,CD 上的点且EAF=60探究图中线段 BE,EF,FD 之间的数量关系小王同学探 究此问题的方法是,延长 FD 到点 G使 DG=BE连结 AG,先证明ABEADG,再证明 AEFAGF,可得出结论,他的结论应是 #*探索延伸: (2)如图 2,若在四边形 ABCD
7、中,AB=AD,B+D=180E,F 分别是 BC,CD 上的点,且EAF= BAD,上述结论是否仍然成立,并说明理由【思路点拨思路点拨】 (1)延长 FD 到点 G使 DG=BE连结 AG,即可证明ABEADG,可得 AE=AG,再证明AEFAGF,可得 EF=FG,即可解题; (2)延长 FD 到点 G使 DG=BE连结 AG,即可证明ABEADG,可得 AE=AG,再证明 AEFAGF,可得 EF=FG,即可解题【答案与解析答案与解析】证明:(1)在ABE 和ADG 中,ABEADG(SAS) , AE=AG,BAE=DAG,EAF= BAD,GAF=DAG+DAF=BAE+DAF=BA
8、DEAF=EAF, EAF=GAF, 在AEF 和GAF 中,AEFAGF(SAS) , EF=FG, FG=DG+DF=BE+DF, EF=BE+DF; 故答案为 EF=BE+DF (2)结论 EF=BE+DF 仍然成立; 理由:延长 FD 到点 G使 DG=BE连结 AG,#*在ABE 和ADG 中,ABEADG(SAS) , AE=AG,BAE=DAG,EAF= BAD,GAF=DAG+DAF=BAE+DAF=BADEAF=EAF, EAF=GAF, 在AEF 和GAF 中,AEFAGF(SAS) , EF=FG, FG=DG+DF=BE+DF,EF=BE+DF. 【总结升华总结升华】本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 预习 复习 巩固 基础 入门 知识 讲解
限制150内