人教版高一年级数学全新知识点复习2021.docx
《人教版高一年级数学全新知识点复习2021.docx》由会员分享,可在线阅读,更多相关《人教版高一年级数学全新知识点复习2021.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版高一年级数学全新知识点复习2021人教版高一年级数学知识点复习11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b
2、,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方
3、程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f
4、(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解kD(D为f(x)的值域);af(x)恒成立af(x)max,;af(x)恒成立af(x)min;(1)(a0,a1,b0,nR+);(2)logaN=(a0,a1,b0,b1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a1,N0);6.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)
5、B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。8.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA);9.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高 一年级 数学 全新 知识点 复习 2021
限制150内