乘法分配律教学设计范本7篇.docx
《乘法分配律教学设计范本7篇.docx》由会员分享,可在线阅读,更多相关《乘法分配律教学设计范本7篇.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、乘法分配律教学设计范本7篇乘法分配律教学设计范本篇1教学内容:青岛版四年级下册第24-25页红点内容信息窗2第1课时教学目标:1通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。2帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。3在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。教学重点:理解和掌握乘法分配律的推导过程。教学难点:理解和掌握乘法分配律的推导过程。教学准备:课件,卡片(课前发给学生)教学过程:一、拟定自学提纲自主预习1.创设情境:
2、(多媒体出示24页情境图)教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?(学生可能提出济青高速公路全长大约多少千米?相遇时大巴车比中巴车多行多少千米?)(教师把这两个问题板书在黑板上。)教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。2.出示学习目标:这节课的学习目标是:(多媒体出示)(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。老师的指导会对你们的学习有很大的帮助,请看自学指导:3.出示自学指导(认真看课本第24页到25页第二个红点前的内
3、容,重点看图上同学的对话。思考:(1)如何求济青公路的全长,有几种解法,如何列式计算。(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?(3)什么叫乘法分配律,如何用字母表示?5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)4.学生按自学指导自学,教师巡视,关注学困生。二、汇报交流评价质疑调查学情:看完的同学请举手!看会的请放下。1.小组交流:学习中你有哪些收获、困惑和体会,请在小组内交流一下。2.班内汇报:师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。课堂生成预设:(1)济青高速公路全长
4、大约多少千米?教师追问:第一种算法是先算什么,再算什么?第二种算法呢?预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)(2)相遇时大巴车比中巴车多行多少千米?(11090)2110290220222018040(千米)40(千米)教师追问:你能说说两种算式的意思么?预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多
5、行的路程。(3)观察、比较两种算法的过程和结果,你有什么发现?预设一:第一种算法是先加(或减)再乘;预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。(4)据此,你有什么猜想?预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。(5)怎样验证你的猜想呢?(师用线段图帮助学生理清思路)学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。通过观察,有何发现?引导学生回答:举例验证:(12512)81258128(404)254025425(816)125812516125(808)125801258125(6)通过验证,你能得出什么
6、结论?结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。(板书课题)你会用字母表示这个规律吗?(用字母表示:(ab)cacbc)三、抽象概括总结提升1通过以上研究,你得到了什么结论?课堂预设:预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。预设四:这个规律叫乘法分配律,可以用字母表示为:(ab)c
7、acbc2如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?课堂预设:举例验证:(235)4243454(100010010)3100031003103教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。设计意图:将乘法分配律适当拓展3在记忆这个规律时,应该注意什么?【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。课堂预设:预设一:括号里的每一个数都要乘括号外的数。预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。预设三:这个规律还可以倒过来看。教师追问:怎样倒过来看?预设:几个数都乘同一个数,再相加
8、或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。四、巩固应用拓展提高教师引导:怎么样?学会了吗?想不想挑战一下自己?1.考一考(课件出示第26页第2题)(1)指4名学困生板演,其余同做在练习本上。(2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。课堂预设:(以第一题为例)(8070)5(8070)580707058057052议一议(1)你认为谁的答案对,为什么?谁的答案不对,为什么?(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。(3)用同样的方法评议其余3题。(4)同桌互改(5)统计错题情况,让小
9、组代表说说错误原因。(6)学生各自订正错题。3.全课小结:你在本节课中有什么收获?课堂预设:预设一:我知道了什么是乘法分配律。预设二:我又体验了探索数学规律的一般方法通过观察发现问题提出猜想举例验证得出结论。预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!五、当堂训练1出示课本第26页第3题2新课堂第17到第19页信息窗2第1课时内容。同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。板书设计乘法的分配律济青高速公路全长大约多少千米?相遇时大巴车比中巴车多行多少千米?(11090)21102902(11090)21102902验证:(12512)81
10、258128(404)254025425(816)125812516125(808)125801258125结论:用字母表示:(ab)cacbc)(235)4243454(100010010)3100031003103拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。使用说明:1教学反思:乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,
11、这节课的亮点主要体现在以下几个方面:(1)引入生活问题,激趣探究。在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”让学生根据提供的条件,用不同的方法解决,从而发现(12512)81258128这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。(2)提供学生独立探究的机会。我要求学生观
12、察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。(3)为学生的学习方式的转变创设了条件。为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教
13、学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。不足之处:(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(11090)2=1102902);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然
14、后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。(3)在学生总结出乘法分配律的概念时,我只
15、是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。2使用建议:(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。(3)订正汇报时,让学生之间相互评价。3急需解决的问题:如何使课堂更加实用高效?如何解决学生运用乘法分配律进行简便计算的“漏乘”问题?乘法分配律教学设计范本篇2教学内容苏教版义务教育课程标准实验教科书数学四年级(下册)第5455页。教学目标1
16、.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。教学过程一、创设比赛场景,在活动中激趣谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?A组B组(1)1356656(1)(13565)6(2)937913(2)9(3713)在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?
17、那我们再来一次好吗?A组B组(1)(104)25(1)1025425(2)(48)125(2)41258125谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践
18、活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】二、创设活动情境,在合作中探究1.交流算法,初步感知(课件出示例题情境图)谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?(1)学生的选择方法1:买5件夹克衫和5条裤子一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)反馈:你是怎样解决这一问题的?为什么这样列式?组织学生交流
19、自己的解题方法,再分别说说两个算式的意义。(课件显示)谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?学生在自己的本子上写,教师巡视。教师板书:(65+45)5=655+455,让学生读一读。(2)学生的选择方法2:买5件短袖衫和5条裤子提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?根据学生回答,列出算式:325+455和(32+45)5再问:这两个算式有什么关系?可以用什么符号把它们连接起来?教师板书:(32+45)5=325+455启发:比较这两个等式,它们有什么相同的地方?2.深入体验,丰富感知。现在请每个同学拿出信封中
20、的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。在得数相同的两个算式中间的里画“=”(1)(2816)7287167(2)15394539(1545)39(3)74(201)742074(4)4050509040(5090)(5)(12550)81258508分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)学生举例并组织交流。(比较这些等式是否具有相同的
21、特点)3.反思学习,揭示规律提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。如果用a、b、c代表上面等式中的数,这个规律怎样表示?板书:(a+b)c=ac+bc板书好适当图例解释意思小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)对于乘法分配律,用字母来表示,感觉怎样简洁、明了,这就是数学的美!【评析:深层次的探究,教师不急于点明
22、规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】三、巩固内化知识,在实践中运用谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!1.大显身手出示“想想做做”第1题,让学生在书上填一填。师:第2题你是怎么想的?小结:乘法分配律可以正着用,也可以反着用。补充板书:ac+bc=(a+b)c2.生活应用(“想想做做”第3题)小结:说说两种方法的联系。3.巧妙运用(“想想做做”第4题)(同桌一人做一组,做在练
23、习本上)谈话:每组两道算式有什么联系?哪一题计算比较简便?现在你知道上课开始时为什么B组同学算得快吗?小结:乘法分配律可以使计算简便。4.明辨是非我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?王小明这样计算:(32)(34+36)=570=350(人)观察一下,你赞同王小明的算法吗?为什么?要用乘法分配律,要有什么条件?5.巧猜字谜猜一猜,等号后边是三个什么字?人(1+2+3)=6.大胆猜想如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?学生小组交流猜想。谈话:我们再回到课开始的那条题目上,如果于老师想知道“买
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乘法 分配律 教学 设计 范本
限制150内