第五章无穷级数第一节常数项级数优秀PPT.ppt
《第五章无穷级数第一节常数项级数优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第五章无穷级数第一节常数项级数优秀PPT.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五章无穷级数第一节常数项级数第五章无穷级数第一节常数项级数1 1第一页,本课件共有53页一一 常数项级数的概念及基本性质常数项级数的概念及基本性质1 常数项级数的概念常数项级数的概念 引例引例1.用圆内接正多边形面积逼近圆面积用圆内接正多边形面积逼近圆面积.依次作圆内接正依次作圆内接正边形边形,这个和逼近于圆的面积这个和逼近于圆的面积 A.设设 a0 表示表示即即内接正三角形面积内接正三角形面积,ak 表示边数表示边数增加时增加的面积增加时增加的面积,则圆内接正则圆内接正第二页,本课件共有53页引例引例2.小球从小球从 1 米高处自由落下米高处自由落下,每次跳起的高度减每次跳起的高度减少一半
2、少一半,问小球是否会在某时刻停止运动问小球是否会在某时刻停止运动?说明道理说明道理.由自由落体运动方程由自由落体运动方程知知则小球运动的总时间为则小球运动的总时间为设设 tk 表示第表示第 k 次小球落地的时间次小球落地的时间,第第 k 次小球跳起的次小球跳起的高度为高度为米,米,因此因此第三页,本课件共有53页定义定义:给定一个数列给定一个数列将各项依将各项依即即称上式为称上式为无穷级数无穷级数,其中第其中第 n 项项叫做级数的叫做级数的一般项一般项,级数的前级数的前 n 项和项和称为称为级数的部分和级数的部分和.次相加次相加,简记为简记为收敛收敛,则称无穷级数则称无穷级数并称并称 S 为级
3、数的为级数的和和,记作记作第四页,本课件共有53页当级数收敛时当级数收敛时,称差值称差值为级数的为级数的余项余项.则称无穷级数则称无穷级数发散发散.显然显然第五页,本课件共有53页例例1.讨论等比级数讨论等比级数(又称几何级数又称几何级数)(q 称为公比称为公比)的敛散性的敛散性.解解:1)若若从而从而因此级数收敛因此级数收敛,从而从而则部分和则部分和因此级数发散因此级数发散.其和为其和为第六页,本课件共有53页2).若若因此级数发散因此级数发散;因此因此n 为奇数为奇数n 为偶数为偶数从而从而综合综合 1)、2)可知可知,时时,等比级数收敛等比级数收敛;时时,等比级数发散等比级数发散.则则级
4、数成为级数成为不存在不存在,因此级数发散因此级数发散.此时此时第七页,本课件共有53页如果级数如果级数是发散的。是发散的。解解例例2.说明调和级数说明调和级数:是收敛的,是收敛的,则则但但所以,所以,级数级数是发散的是发散的第八页,本课件共有53页例例3.判别下列级数的敛散性判别下列级数的敛散性:解解:(1)所以级数所以级数(1)发散发散;技巧技巧:利用利用“拆项相消拆项相消”求和求和第九页,本课件共有53页(2)所以级数所以级数(2)收敛收敛,其和为其和为 1.技巧技巧:利用利用“拆项相消拆项相消”求和求和第十页,本课件共有53页 例例4.判别级数判别级数的敛散性的敛散性.解解:故原级数收敛
5、故原级数收敛,其和为其和为第十一页,本课件共有53页2 无穷级数的基本性质无穷级数的基本性质 性质性质1 若级数若级数收敛于收敛于 S,则各项则各项乘以常数乘以常数 c 所得级数所得级数也收敛也收敛,证证:令令则则这说明这说明收敛收敛,其和为其和为 c S.说明说明:级数各项乘以级数各项乘以非零常数非零常数后其敛散性不变后其敛散性不变.即即其和为其和为 c S.即即第十二页,本课件共有53页性质性质2 设有两个收敛级数设有两个收敛级数则级数则级数也收敛也收敛,其和为其和为证证:令令则则这说明级数这说明级数也收敛也收敛,其和为其和为即即第十三页,本课件共有53页说明说明:(2)若两级数中一个收敛
6、一个发散若两级数中一个收敛一个发散,则则必发散必发散.但若二级数都发散但若二级数都发散,不一定发散不一定发散.例如例如,(1)性质性质2 表明收敛级数可逐项相加或减表明收敛级数可逐项相加或减.(用反证法可证用反证法可证)第十四页,本课件共有53页例例5判别下列级数的敛散性,如果收敛,求其和判别下列级数的敛散性,如果收敛,求其和解解(1)因为因为均收敛,均收敛,所以所以收敛,收敛,且且(2)因为因为收敛,收敛,发散,发散,发散。发散。第十五页,本课件共有53页性质性质3.在级数前面加上或去掉在级数前面加上或去掉有限项有限项,不会影响级不会影响级数的敛散性数的敛散性.证证:将级数将级数的前的前 k
7、 项去掉项去掉,的部分和为的部分和为数敛散性相同数敛散性相同.当级数收敛时当级数收敛时,其和的关系为其和的关系为类似可证前面加上有限项的情况类似可证前面加上有限项的情况.极限状况相同极限状况相同,故新旧两级故新旧两级所得新级数所得新级数第十六页,本课件共有53页性质性质4.收敛级数加括弧后所成的级数仍收敛于原级收敛级数加括弧后所成的级数仍收敛于原级数的和数的和.证证:设收敛级数设收敛级数若按某一规律加括弧若按某一规律加括弧,则新级数的部分和序列则新级数的部分和序列 为原级数部分和为原级数部分和序列序列 的一个子序列的一个子序列,推论推论:若加括弧后的级数发散若加括弧后的级数发散,则原级数必发散
8、则原级数必发散.注意注意:收敛级数去括弧后所成的级数不一定收敛收敛级数去括弧后所成的级数不一定收敛.但但发散发散.因此必有因此必有例如,例如,用反证法可证用反证法可证例如例如第十七页,本课件共有53页例例6.判断级数的敛散性判断级数的敛散性:解解:考虑加括号后的级数考虑加括号后的级数发散发散,从而原级数发散从而原级数发散.第十八页,本课件共有53页设收敛级数设收敛级数则必有则必有证证:可见可见:若级数的一般项不趋于若级数的一般项不趋于0,则级数必发散则级数必发散.性质性质5.收敛级数的必要条件收敛级数的必要条件注意注意:并非级数收敛的充分条件并非级数收敛的充分条件.例如例如,调和级数调和级数虽
9、然虽然但此级数发散但此级数发散.第十九页,本课件共有53页例例7.说明下列级数是发散的说明下列级数是发散的解解(1)所以原级数是发散的所以原级数是发散的(2)所以原级数是发散的所以原级数是发散的(3)级数是发散级数是发散第二十页,本课件共有53页(4)故故从而从而这说明级数这说明级数(1)发散发散.第二十一页,本课件共有53页二二 正项级数及其判敛法正项级数及其判敛法若若基本定理基本定理 收敛的充要条件是收敛的充要条件是部分和部分和有界有界.若若收敛收敛,部分和数列部分和数列有界有界,故故从而从而又已知又已知故有界故有界.则称则称为为正项级数正项级数.单调递增单调递增,收敛收敛,也收敛也收敛.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 无穷 级数 第一节 常数 优秀 PPT
限制150内