第一节:二重积分的概念与性质优秀PPT.ppt
《第一节:二重积分的概念与性质优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第一节:二重积分的概念与性质优秀PPT.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节:二重积分的概念与性质现在学习的是第1页,共28页柱体体积柱体体积=底面积底面积 高高特点特点:平顶:平顶.柱体体积柱体体积=?特点特点:曲顶:曲顶.1、引例:曲顶柱体的体积、引例:曲顶柱体的体积一、二重积分的基本概念一、二重积分的基本概念现在学习的是第2页,共28页曲顶柱体曲顶柱体(1)底是底是 x o y 面上的有界闭区域;面上的有界闭区域;(2)侧面是以侧面是以 D 的边界的边界曲线为准线而母线平行曲线为准线而母线平行于于 z 轴的柱面;轴的柱面;(3)顶是曲面顶是曲面 z=f(x,y),现在学习的是第3页,共28页计算曲顶柱体体积的一般方法:计算曲顶柱体体积的一般方法:用若干个小
2、平顶柱体体积之和近似表示曲用若干个小平顶柱体体积之和近似表示曲顶柱体的体积,顶柱体的体积,先分割曲顶柱体的底,并取典型小区域,先分割曲顶柱体的底,并取典型小区域,现在学习的是第4页,共28页1:用一组曲线网将用一组曲线网将 D 任意分成任意分成 n 个小闭区域:个小闭区域:将曲顶柱体分成将曲顶柱体分成 n 个小曲顶柱体个小曲顶柱体以以表示以表示以为底的第为底的第 i 个小曲顶柱体的体积个小曲顶柱体的体积现在学习的是第5页,共28页2:近似计算近似计算3:取极限求取极限求 V 的精确值的精确值以以和和 V 的体积的体积表示表示内任意两点内任意两点间距离的最大值,称为间距离的最大值,称为的直径的直
3、径现在学习的是第6页,共28页求平面薄片的质量求平面薄片的质量将薄片分割成若干小块(将薄片分割成若干小块(n),),取典型小块,将其近似看作均匀薄片,取典型小块,将其近似看作均匀薄片,薄片总质量的近似值为薄片总质量的近似值为每个小块的质量近似为每个小块的质量近似为 薄片总质量的精确值为薄片总质量的精确值为现在学习的是第7页,共28页 定义:定义:设设 f(x,y)是有界闭区域是有界闭区域 D 上的有界函数:上的有界函数:(1):):分割分割:用一组曲线网将:用一组曲线网将 D 任意分成任意分成 n 个小区域个小区域(2):):作和作和:在每个小区域:在每个小区域并作和并作和(3):):取极限:
4、令取极限:令上任取一点上任取一点作乘积作乘积为为的直径,并记的直径,并记现在学习的是第8页,共28页如果当如果当则称此极限为则称此极限为 f(x,y)在在 D 上的二重积分,记为上的二重积分,记为时,上述和的极限存在,且与小时,上述和的极限存在,且与小区域的分法及点区域的分法及点的取法无关,的取法无关,积积积积分分分分区区区区域域域域积积积积分分分分和和和和被被被被积积积积函函函函数数数数积积积积分分分分变变变变量量量量被被被被积积积积表表表表达达达达式式式式面面积积元元素素现在学习的是第9页,共28页(1)如果如果 f(x,y)在在 有界闭区域有界闭区域 D 上连续,则上连续,则 f(x,y
5、)在在 D 上一定可积。上一定可积。(2)如果如果 f(x,y)在在 D 上可积,则该积分与上可积,则该积分与 D 因此,在直角坐标系中,用平行于因此,在直角坐标系中,用平行于 x 轴和轴和 y 轴的轴的两组直线分割两组直线分割 D,如图所示,如图所示的分法和分点的分法和分点的取法无关,的取法无关,几点说明几点说明现在学习的是第10页,共28页(3)几何意义:当几何意义:当 f(x,y)0 时,二重积分时,二重积分表示曲顶柱体的体积;表示曲顶柱体的体积;当当 f(x,y)0 时,此时曲顶柱体位于时,此时曲顶柱体位于 x 0 y 平平面的下方,且二重积分的值也为负,故二重积分面的下方,且二重积分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一节 二重积分 概念 性质 优秀 PPT
限制150内