空间解析几何简介课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《空间解析几何简介课件.ppt》由会员分享,可在线阅读,更多相关《空间解析几何简介课件.ppt(86页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间解析几何简介课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望数量关系数量关系 第一部分第一部分 向量向量第二部分第二部分 空间解析几何空间解析几何 在三维空间中:空间形式空间形式 点点,线线,面面基本方法基本方法 坐标法坐标法;向量法向量法坐标坐标,方程(组)方程(组)空间解析几何四、利用坐标作向量的线性运算四、利用坐标作向量的线性运算 第一节一、向量的概念一、向量的概念二、向量的线性运算二、向量的线性运算 三、空间直角坐标系三、空间直角坐标系五、向量的模
2、、方向角、投影五、向量的模、方向角、投影 向量及其线性运算 表示法:向量的模:向量的大小,一、向量的概念一、向量的概念向量:(又称矢量).既有大小,又有方向的量称为向量向径(矢径):自由向量:与起点无关的向量.起点为原点的向量.单位向量:模为 1 的向量,零向量:模为 0 的向量,有向线段 M1 M2,或 a,规定:零向量与任何向量平行;若向量 a 与 b大小相等,方向相同,则称 a 与 b 相等,记作 ab;若向量 a 与 b 方向相同或相反,则称 a 与 b 平行,ab;与 a 的模相同,但方向相反的向量称为 a 的负向量,记作因平行向量可平移到同一直线上,故两向量平行又称 两向量共线.若
3、 k(3)个向量经平移可移到同一平面上,则称此 k 个向量共面.记作a;二、向量的线性运算二、向量的线性运算1.向量的加法向量的加法三角形法则:平行四边形法则:运算规律:交换律结合律三角形法则可推广到多个向量相加.2.向量的减法向量的减法三角不等式3.向量与数的乘法向量与数的乘法 是一个数,规定:可见 与 a 的乘积是一个新向量,记作总之:运算律:结合律分配律因此三、空间直角坐标系三、空间直角坐标系由三条互相垂直的数轴按右手规则组成一个空间直角坐标系.坐标原点 坐标轴x轴(横轴)y轴(纵轴)z 轴(竖轴)过空间一定点 o,坐标面 卦限(八个)zox面1.空间直角坐标系的基本概念空间直角坐标系的
4、基本概念向径在直角坐标系下坐标轴上的点 P,Q,R;坐标面上的点 A,B,C点点 M特殊点的坐标:有序数组(称为点 M 的坐标坐标)原点 O(0,0,0);坐标轴:坐标面:2.向量的坐标表示向量的坐标表示在空间直角坐标系下,则沿三个坐标轴方向的分向量分向量.设点 M的坐标为此式称为向量 r 的坐标分解式坐标分解式,任意向量 r 可用向径 OM 表示.四、利用坐标作向量的线性运算四、利用坐标作向量的线性运算设则平行向量对应坐标成比例:五、向量的模、方向角、投影五、向量的模、方向角、投影 1.向量的模与两点间的距离公式向量的模与两点间的距离公式则有由勾股定理得因得两点间的距离公式:对两点与2.方向
5、角与方向余弦方向角与方向余弦设有两非零向量 任取空间一点 O,称 =AOB(0 )为向量 的夹角.类似可定义向量与轴,轴与轴的夹角.与三坐标轴的夹角,为其方向角方向角.方向角的余弦称为其方向余弦方向余弦.记作方向余弦的性质:*三、三、向量的混合积向量的混合积 第二节一、一、两向量的内积两向量的内积二、二、两向量的向量积两向量的向量积数量积 向量积 *混合积一、两向量的内积一、两向量的内积沿与力夹角为的直线移动,1.定义定义设向量的夹角为,称 记作内积(点积,数量积).引例引例.设一物体在常力 F 作用下,位移为 s,则力F 所做的功为记作故2.性质性质为两个非零向量,则有 3.运算律运算律(1
6、)交换律(2)结合律(3)分配律事实上,当时,显然成立;4.数量积的坐标表示数量积的坐标表示设则当为非零向量时,由于两向量的夹角公式,得例例2.已知三点 AMB.解解:则求故为 ).求单位时间内流过该平面域的流体的质量P(流体密度例例3.设均匀流速为的流体流过一个面积为 A 的平面域,与该平面域的单位垂直向量解解:单位时间内流过的体积的夹角为且为单位向量二、两向量的向量积二、两向量的向量积引例引例.设O 为杠杆L 的支点,有一个与杠杆夹角为符合右手规则矩是一个向量 M:的力 F 作用在杠杆的 P点上,则力 F 作用在杠杆上的力1.定义定义定义向量方向:(叉积)记作且符合右手规则模:向量积,称引
7、例中的力矩思考思考:右图三角形面积S2.性质性质为非零向量,则3.运算律运算律(2)分配律(3)结合律证明证明:4.向量积的行列式计算法向量积的行列式计算法例例4.已知三点角形 ABC 的面积 解解:如图所示,求三一点 M 的线速度例例5.设刚体以等角速度 绕 l 轴旋转,导出刚体上 的表示式.解解:在轴 l 上引进一个角速度向量使其在 l 上任取一点 O,作它与则点 M离开转轴的距离且符合右手法则的夹角为,方向与旋转方向符合右手法则,向径*三、向量的混合积向量的混合积1.定义定义 已知三向量称数量混合积混合积.记作几何意义几何意义 为棱作平行六面体,底面积高故平行六面体体积为则其2.混合积的
8、坐标表示混合积的坐标表示设3.性质性质(1)三个非零向量共面的充要条件是(2)轮换对称性:(可用三阶行列式推出)例例6.已知一四面体的顶点4),求该四面体体积.解解:已知四面体的体积等于以向量为棱的平行六面体体积的故例例7.证明四点共面.解解:因故 A,B,C,D 四点共面.内容小结内容小结设1.向量运算加减:数乘:点积:叉积:混合积:2.向量关系:第三节一、平面的方程平面的方程二、平面的一般方程二、平面的一般方程三、两平面的夹角三、两平面的夹角平面及其方程 定义:定义:设 是 中一个平面,定义如上,则 中与二维子空间 正交的非零向量称为平面 的法向量;平面 的所有法向量添上零向量组成 的一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 解析几何 简介 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内