5.4平面向量的综合应用---高考复习.docx
《5.4平面向量的综合应用---高考复习.docx》由会员分享,可在线阅读,更多相关《5.4平面向量的综合应用---高考复习.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5.4平面向量的综合应用1向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:问题类型所用知识公式表示线平行、点共线等问题共线向量定理ababx1y2x2y10,其中a(x1,y1),b(x2,y2),b0垂直问题数量积的运算性质abab0x1x2y1y20,其中a(x1,y1),b(x2,y2),且a,b为非零向量夹角问题数量积的定义cos (为向量a,b的夹角),其中a,b为非零向量长度问题数量积的定义|a|,其中a(x,y),a为非零向量(2)用向量方法解决平面几何问题的步骤平面几何问题向量问题解决向量问题解决几何问题2向量在解析几何中的应用向量在解析几何中的应用,是以解析几何
2、中的坐标为背景的一种向量描述它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体3向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题概念方法微思考1根据你对向量知识的理解,你认为可以利用向量方法解决哪些几何问题?提示(1)线段的长度问题(2)直线或线段平行问题(3)直线或线段垂直问题(4)角的问题等2如何用向量解决平面几何问题?提示用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题然后通过向量运算,研究几何元素之间的关系,如距离、夹角等问题,最后把运算结
3、果“翻译”成几何关系题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若,则A,B,C三点共线()(2)在ABC中,若0,n0,则由2,得(n,0)(m2,m)2(n,0)(m,m),所以n(m2)2nm,化简得m2.故(m,m)(m2,m)2m22m12.(2)(2018广元统考)在ABC中,AB2AC6,2,点P是ABC所在平面内一点,则当222取得最小值时,_.答案9解析2,2()0,即BAAC.以点A为原点建立如图所示的平面直角坐标系,则B(6,0),C(0,3),设P(x,y),222x2y2(x6)2y2x2(y3)23x212x3y26y453(x2)2(y1)
4、210当x2,y1时,222有最小值,此时(2,1)(6,3)9.思维升华 向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解跟踪训练1 (1)(2019松原三校联考)已知ABC外接圆的圆心为O,AB2,AC2,A为钝角,M是BC边的中点,则等于()A3 B4C5 D6答案C解析M 是BC边的中点,(),O 是ABC 的外接圆的圆心,|cosBAO|2(2)26.同理可得|2(2)24.()(64)5.(2)(2018聊城模拟)在ABC中,BC边上的
5、中线AD的长为2,点P是ABC所在平面上的任意一点,则的最小值为()A1 B2 C2 D1答案C解析建立如图所示的平面直角坐标系,使得点D在原点处,点A在y轴上,则A(0,2)设点P的坐标为(x,y),则,(x,y),故22222,当且仅当x0,y1时等号成立所以的最小值为2.题型二向量在解析几何中的应用例2 (1)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足|1,则|2的最大值是()A. B.C. D.答案B解析如图,由|1知点P的轨迹是以A为圆心,以1为半径的圆由知,点M为PC的中点,取AC的中点N,连接MN,则|MN|AP|,所以点M的轨迹是以N为圆心,以为半径的圆因为|3
6、,所以|的最大值为3,|2的最大值为.故选B.(2)在平面直角坐标系xOy中,A(12,0),B(0,6),点P在圆O:x2y250上,若20,则点P的横坐标的取值范围是_答案5,1解析方法一因为点P在圆O:x2y250上,所以设P点坐标为(x,)(5x5)因为A(12,0),B(0,6),所以(12x,)或(12x,),(x,6)或(x,6)因为20,先取P(x,)进行计算,所以(12x)(x)()(6)20,即2x5.当2x50,即x0),A,B两点关于x轴对称若圆C上存在点M,使得0,则当m取得最大值时,点M的坐标是()A. B.C. D.答案C解析由题意得圆的方程为(x1)2(y)21
7、,B(0,m),设M(x,y),由于0,所以(x,ym)(x,ym)0,所以x2y2m20,所以m2x2y2,由于x2y2表示圆C上的点到原点距离的平方,所以连接OC,并延长和圆C相交,交点即为M,此时m2最大,m也最大|OM|123,MOx60,所以xM3sin 30,yM3sin 60.故选C.题型三向量的其他应用命题点1向量在不等式中的应用例3 已知O是坐标原点,点A(1,2),若点M(x,y)为平面区域上的一个动点,则的取值范围是()A1,0 B0,1C1,3 D1,4答案D解析作出点M(x,y)满足的平面区域如图阴影部分所示(含边界),设z,因为A(1,2),M(x,y),所以zx2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5.4 平面 向量 综合 应用 高考 复习
限制150内