2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc
《2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc》由会员分享,可在线阅读,更多相关《2020-2021学年高中数学-第二章-空间向量与立体几何-5-夹角的计算课时跟踪训练(含解析)北师.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章 空间向量与立体几何A组基础巩固1如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A.B.C. D.解析:如图所示,建立空间直角坐标系Bxyz.由于ABBCAA1,不妨取AB2,则B(0,0,0),E(0,1,0),F(0,0,1),C1(2,0,2)(0,1,1),(2,0,2),cos,异面直线EF和BC1的夹角为,故选C.答案:C2若平面的一个法向量为n(4,1,1),直线l的方向向量为a(2,3,3),则直线l与平面夹角的余弦值为()A B.C D.解析:cosa,n,直线l与
2、平面夹角的正弦值为,余弦值为.答案:D3若两个平面的法向量分别为(5,12,0)和(0,5,12),则这两个平面的二面角的余弦值为()A B.C D解析:由及两个平面的二面角的范围为0,可知这两个平面的二面角的余弦值为.答案:D4如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()A. B.C. D.解析:设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量(2,2,1),(0,2,1),由向量的夹角公式得cos,.答案:A5如图所示,已知四棱锥PABCD中,底面ABCD
3、是菱形,且PA平面ABCD,PAADAC,点F为PC的中点,则二面角CBFD的正切值为 ()A. B.C. D.解析:如图所示,设AC与BD交于点O,连接OF.以O为坐标原点,OB,OC,OF所在直线分别为x,y,z轴建立空间直角坐标系Oxyz.设PAADAC1,则BD,所以O(0,0,0),B,F,C,易知为平面BDF的一个法向量,由,设平面BCF的法向量为n(x,y,z),则,即,令x1,则y,z,所以平面BCF的一个法向量为n(1,)所以cosn,sinn,所以tann,.故二面角CBFD的正切值为.答案:D6在正方体ABCDA1B1C1D1中,E,F分别为AB,CC1的中点,则异面直线
4、EF与A1C1所成角的大小是_解析:以A为坐标原点,以AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,设B(2,0,0),则E(1,0,0),F(2,2,1),C1(2,2,2),A1(0,0,2)所以(1,2,1),(2,2,0)cos,所以,30,即异面直线EF与A1C1所成的角为30.答案:307若直线l的方向向量a(2,3,1),平面的一个法向量n(4,0,1),则直线l与平面所成角的正弦值为_解析:由题意,得直线l与平面所成角的正弦值为sin .答案:8.已知四棱锥PABCD的底面ABCD是边长为2的正方形,PAPD,平面ABCD平面PAD,M是PC的中点,O是
5、AD的中点,则直线BM与平面PCO所成角的正弦值为_解析:取BC的中点E,连接OE,以O为坐标原点,射线OA,OE,OP分别为x,y,z轴的正半轴,建立空间直角坐标系(图略),则O(0,0,0),B(1,2,0),C(1,2,0),P(0,0,2),M.因此,(0,0,2),(1,2,0)设平面PCO的法向量为n(x,y,z),则,即,取n(2,1,0),因此直线BM与平面PCO所成角的正弦值为|cos,n|.答案:9.如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别为A1B1和BB1的中点,求直线AM与CN所成角的余弦值解析:解法一,()(),而| .同理,|,设直线AM与CN
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 学年 高中数学 第二 空间 向量 立体几何 夹角 计算 课时 跟踪 训练 解析 北师
链接地址:https://www.taowenge.com/p-65738771.html
限制150内