计量经济学-多元线性回归.ppt
《计量经济学-多元线性回归.ppt》由会员分享,可在线阅读,更多相关《计量经济学-多元线性回归.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、内容回顾什么是回归?什么是计量模型?什么是自变量、因变量?如何估计参数?有哪些基本方法?各自原理是什么?估计出来的参数具有哪些基本性质?如何对其进行检验?如何判断模型估计的总体效果?如何运用模型进行预测?如何进行区间预测?如何创建WF?如何录入数据?如何估计?第四章第四章 多元线性回归模型多元线性回归模型问题的提出*现实生活中引起被解释变量变化的因素并非仅只一个解释变量,可能有很多个解释变量。例如,产出往往受各种投入要素资本、劳动、技术等的影响;销售额往往受价格和公司对广告费的投入的影响等。*所以在一元线性模型的基础上,提出多元线性模型解释变量个数=2第一节第一节 多元线性回归模型多元线性回归
2、模型 第二节第二节 多元线性回归模型的参数估计多元线性回归模型的参数估计第三节第三节 多元线性回归模型的统计检验多元线性回归模型的统计检验第四节第四节 多元线性回归模型的其他函数多元线性回归模型的其他函数形式形式4.1 多元线性回归模型多元线性回归模型 一、多元线性回归模型一、多元线性回归模型 二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 一、多元线性回归模型一、多元线性回归模型 多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式一般表现形式:i=1,2,n其中:k为解释变量的数目,j称为回归参数回归参数(regression coeffici
3、ent)。是因变量对自变量偏导数。习习惯惯上上:把常常数数项项看成为一虚虚变变量量的系数,该虚变量的样本观测值始终取1。这样:模型中解释变量的数目为(模型中解释变量的数目为(k+1+1)取 n 个观察值,i=1,2,n,得 n 个方程 方程表示:方程表示:各变量各变量X X值固定时值固定时Y Y的平均响应的平均响应。j也也被被称称为为偏偏回回归归系系数数,表表示示在在其其他他解解释释变变量量保保持持不不变变的的情情况况下下,Xj每每变变化化1个个单单位位时时,Y的的均值均值E(Y)的变化的变化;或或者者说说j给给出出了了Xj的的单单位位变变化化对对Y均均值值的的“直直接接”或或“净净”(不含其
4、他变量)影响。(不含其他变量)影响。总体回归模型总体回归模型n个随机方程的个随机方程的矩阵表达式矩阵表达式为为 其中其中样本回归函数样本回归函数:用来估计总体回归函数:用来估计总体回归函数其其随机表示式随机表示式:ei称为称为残差残差或或剩余项剩余项(residuals),可看成是可看成是总体回归函数中随机扰动项总体回归函数中随机扰动项 i的近似替代。的近似替代。样本回归函数样本回归函数的的矩阵表达矩阵表达:其中:其中:二、多元线性回归模型的基本假定二、多元线性回归模型的基本假定 假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序
5、列相关性 假设3,解释变量与随机项不相关 假设4,随机项满足正态分布 维恩图12345上述假设的上述假设的矩阵符号表示矩阵符号表示 式:式:假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即X满秩。假设2,假设3,E(X)=0,即 第二节第二节 多元线性回归模型的估计多元线性回归模型的估计 估计方法:OLS一、普通最小二乘估计一、普通最小二乘估计 二、参数估计量的性质二、参数估计量的性质三、样本容量问题三、样本容量问题四、多元线性回归模型的参数估计实例四、多元线性回归模型的参数估计实例 一、普通最小二乘估计一、普通最小二乘估计对于随机抽取的n组观测值如果样本函数样本函数的参数估计值已经
6、得到,则有:i=1,2n根据最小二乘原理最小二乘原理,参数估计值应该是下列方程组的解 其中于是得到关于待估参数估计值的正规方程组正规方程组:正规方程组正规方程组的矩阵形式矩阵形式即由于XX满秩,故有 对上述方程两边同乘观察值距阵 X 的转置距阵注:关注教材P73页推导过程 *最大似然估计最大似然估计 对于多元线性回归模型易知 Y的随机抽取的n组样本观测值的联合概率即为变量Y的或然函数或然函数 对数或然函数为对对数或然函数求极大值,也就是对 求极小值。因此,参数的最大或然估计最大或然估计为为结果与参数的普通最小二乘估计相同结果与参数的普通最小二乘估计相同*矩估计矩估计(Moment Method
7、,MM)OLS估计是通过得到一个关于参数估计值的正正规方程组规方程组并对它进行求解而完成的。该该正规方程组正规方程组 可以从另外一种思路来导:求期望:称为原总体回归方程的一组矩条件矩条件,表明了原总体回归方程所具有的内在特征。由此得到正规方程组正规方程组 解此正规方程组即得参数的MM估计量。易知MM估计量与与OLS、ML估计量等价。矩方法矩方法是是工具变量方法工具变量方法(Instrumental Variables,IV)和和广义矩估计方法广义矩估计方法(Generalized Moment Method,GMM)的基础的基础 在在矩方法矩方法中关键是利用了中关键是利用了 E(X)=0 如果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 多元 线性 回归
限制150内