《统计学第4章动态数列.ppt》由会员分享,可在线阅读,更多相关《统计学第4章动态数列.ppt(58页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章 动态数列 第一节第一节 动态数列的编制动态数列的编制 一、动态数列的概念一、动态数列的概念动动态数列又称时间数列。它是将某种统计指标,或态数列又称时间数列。它是将某种统计指标,或在不同时间上的不同数值,按时间先后顺序排列在不同时间上的不同数值,按时间先后顺序排列起来,以便于研究其发展变化的水平和速度,并起来,以便于研究其发展变化的水平和速度,并以此来预测未来的一种统计方法。以此来预测未来的一种统计方法。动动态数列由两个基本要素构成:态数列由两个基本要素构成:时时间,即现象所属的时间;间,即现象所属的时间;不不同时间上的统计指标数值,即不同时间同时间上的统计指标数值,即不同时间上该
2、现象的发展水平。上该现象的发展水平。二、动态数列的种类二、动态数列的种类 动态数列按照所列入指标数值的不同可分为:动态数列按照所列入指标数值的不同可分为:绝对数动态数列绝对数动态数列相对数动态数列相对数动态数列平均数动态数列平均数动态数列时期数列时期数列时点数列时点数列时期数列特点:时期数列特点:数数列中各个指标值是可加的;列中各个指标值是可加的;数数列中每个指标值的大小随着时期的长列中每个指标值的大小随着时期的长短而变动;短而变动;数数列中每个指标值通常是通过连续不断列中每个指标值通常是通过连续不断的登记而取得。的登记而取得。时点数列特点:时点数列特点:数数列中各个指标值是不能相加的;列中各
3、个指标值是不能相加的;数数列中每个指标值的大小与时间间隔列中每个指标值的大小与时间间隔的长短没有直接关系;的长短没有直接关系;数数列中每个指标值通常是按期登记一列中每个指标值通常是按期登记一次取得的。次取得的。三、动态数列的编制原则三、动态数列的编制原则 基本原则是遵守其可比性。基本原则是遵守其可比性。具体说有以下几点:具体说有以下几点:注注意时间的长短应统一;意时间的长短应统一;总总体范围应该一致;体范围应该一致;指指标的经济内容应该相同;标的经济内容应该相同;指指标的计算方法和计量单位应该一致。标的计算方法和计量单位应该一致。第二节第二节 动态数列的水平分析指标动态数列的水平分析指标 属属
4、于现象发展的水平分析指标有:于现象发展的水平分析指标有:发展水平发展水平平均发展水平平均发展水平增长量增长量平均增长量。平均增长量。一、发展水平一、发展水平 在在动态数列中,每个绝对数指标数值叫做发动态数列中,每个绝对数指标数值叫做发展水平或动态数列水平。展水平或动态数列水平。如如果用果用a a0 0,a a1 1,a a2 2,a a3 3,aan n,代表数列中代表数列中各个发展水平,则其中各个发展水平,则其中a a0 0即最初水平,即最初水平,a an n即即最末水平最末水平。二、平均发展水平二、平均发展水平 平平均发展水平是对不同时期的发展水平求平均发展水平是对不同时期的发展水平求平均
5、数,统计上又叫序时平均数均数,统计上又叫序时平均数。某车间各月工业增加值月份123456789101112增加值(万元)304038444852546066767082季度一二三四各季每月平均增加值(万元)36486076例例序时平均数与一般平均数的异同点:序时平均数与一般平均数的异同点:二者都是将现象的个别数量差异抽象化,二者都是将现象的个别数量差异抽象化,概括地反映现象的一般水平。概括地反映现象的一般水平。-计算方法不同;计算方法不同;-差异抽象化不同;差异抽象化不同;-序时平均数还可解决某些可比性问题。序时平均数还可解决某些可比性问题。不不同点同点 相相同点同点 序时平均数的计算方法:序
6、时平均数的计算方法:绝绝对数动态数列的序时平均数对数动态数列的序时平均数 1.1.时时期数列的序时平均数期数列的序时平均数2.2.时时点数列的序时平均数点数列的序时平均数(1)(1)如果资料是连续时点资料,可分为二种情况:如果资料是连续时点资料,可分为二种情况:2).2).对对非连续变动的连续时点数列非连续变动的连续时点数列(即分组资料即分组资料)1).1).对对连续变动的连续时点数列连续变动的连续时点数列(即未分组资料即未分组资料)如果资料是间断时点资料,也可分为如果资料是间断时点资料,也可分为 二种情况二种情况:1)1)对对间隔相等的间断时点资料间隔相等的间断时点资料某成品库存量如下:现假
7、定:每天变化是均匀的;本月初与上月末的库存量相等。则各月平均库存量为:3月31日4月30日5月31日6月30日库存量(件)3000330026802800例例2)2)对对间隔不等的间断时点资料间隔不等的间断时点资料 相相对数动态数列的序时平均数对数动态数列的序时平均数1.1.由由两个时期数列对比组成的相对数动态两个时期数列对比组成的相对数动态数列的序时平均数数列的序时平均数2.2.由由两个时点数列对比组成的相对数动态两个时点数列对比组成的相对数动态 数列的序时平均数数列的序时平均数若若为间隔不等的二个间断时点数列对比组成为间隔不等的二个间断时点数列对比组成的相对数动态数列的序时平均数为:的相对
8、数动态数列的序时平均数为:若若由二个连续时点数列对比组成的相对数动由二个连续时点数列对比组成的相对数动态数列的序时平均数:态数列的序时平均数:3.3.由由一个时期数列和一个时点数列对比组成一个时期数列和一个时点数列对比组成 的相对数动态数列的序时平均数。的相对数动态数列的序时平均数。平平均数动态数列的序时平均数均数动态数列的序时平均数1.1.由由一般平均数组成的平均数动态数列一般平均数组成的平均数动态数列 的序时平均数。的序时平均数。一般公式:2.2.由由序时平均数组成的平均数动态数列序时平均数组成的平均数动态数列 的序时平均数的序时平均数。三、增长量三、增长量 说明某种现象在一定时期内所增长
9、的绝对数量。说明某种现象在一定时期内所增长的绝对数量。增长量增长量累计增长量:累计增长量:逐期增长量逐期增长量:年距增长量年距增长量=报告期发展水平报告期发展水平上年同期发展水平上年同期发展水平四、平均增长量四、平均增长量 说明社会现象在一段时期内平均每期增加的说明社会现象在一段时期内平均每期增加的绝对数量。绝对数量。第三节第三节 动态数列的速度分析指标动态数列的速度分析指标 动动态数列的速度指标有态数列的速度指标有:发展速度发展速度增长速度增长速度平均发展速度平均发展速度平均增长速度平均增长速度 一、发展速度一、发展速度 反映社会经济现象发展程度的动态相对指标。反映社会经济现象发展程度的动态
10、相对指标。可分为:定基发展速度:环比发展速度:二、增长速度二、增长速度 反映社会经济现象增长程度的动态相对指标。反映社会经济现象增长程度的动态相对指标。增长速度增长速度=发展速度发展速度-1 -1 (100%100%)年距增长速度年距增长速度=年距增长量年距增长量上年同期发展水平上年同期发展水平=年距发展速度年距发展速度-1 -1 (100%)增长增长1%1%的绝对值的绝对值=增长量增长量增长百分比增长百分比=前一时期水平前一时期水平100三、平均发展速度和平均增长速度三、平均发展速度和平均增长速度 平平均发展速度是各个环比发展速度的动态平均均发展速度是各个环比发展速度的动态平均数数(序时平均
11、数序时平均数),说明某种现象在一个较长时,说明某种现象在一个较长时期中逐年平均发展变化的程度期中逐年平均发展变化的程度;平平均增长速度是各个环比增长速度的动态平均均增长速度是各个环比增长速度的动态平均数,说明某种现象在一个较长时期中逐年平均数,说明某种现象在一个较长时期中逐年平均增长变化的程度增长变化的程度。平均发展速度平均发展速度1.1.几几何平均法,又称水平法何平均法,又称水平法。2.2.方方程法,又称累计法。程法,又称累计法。在实践中,如果长期计划按累计法制定,则要求用在实践中,如果长期计划按累计法制定,则要求用 方程法计算平均发展速度方程法计算平均发展速度。解这样的高次方程,用查表法。
12、平均增长速度平均增长速度平均增长速度平均增长速度=平均发展速度平均发展速度-1 (100%)-1 (100%)平平均发展速度大于均发展速度大于“1”1”,平均增长速度就为正值。,平均增长速度就为正值。则称则称“平均递增速度平均递增速度”或或“平均递增率平均递增率”。平平均发展速度小于均发展速度小于“1”1”,平均增长速度就为负值。,平均增长速度就为负值。则称则称“平均递减速度平均递减速度”或或“平均递减率平均递减率”。第四节第四节 长期趋势的测定与预测长期趋势的测定与预测 长长期趋势就是指某一现象在一个相当长的时期期趋势就是指某一现象在一个相当长的时期内持续发展变化的趋势。内持续发展变化的趋势
13、。(向上或向下变化向上或向下变化)测定长期趋势的目的主要有三个:测定长期趋势的目的主要有三个:把把握现象的趋势变化;握现象的趋势变化;从从数量方面研究现象发展的规律性,探求数量方面研究现象发展的规律性,探求合适趋势线;合适趋势线;为为测定季节变动的需要。测定季节变动的需要。长期趋势的类型基本有二种:长期趋势的类型基本有二种:直直线趋势;线趋势;非非直线趋势,即趋势曲线。直线趋势,即趋势曲线。测定长期趋势常用的主要方法有:测定长期趋势常用的主要方法有:间间隔扩大法;隔扩大法;移移动平均法;动平均法;最最小平方法。小平方法。一、间隔扩大法一、间隔扩大法 月份123456789101112增加值50
14、.5455251.550.455.55358.45759.25860.5某工厂某年各月增加值完成情况 单位:万元例例 通过扩大时间间隔,编制成如下新的动态数列:第一季度第二季度第三季度第四季度增加值(万元)147.5157.4168.4177.7仍用上例资料:月份123456789101112增加值y(万元)50.5455251.550.455.55358.45759.25860.5三项移动平均yc-49.249.551.352.55355.656.158.258.159.2-趋势值项数=原数列项数-移动平均项数+1 =12-3+1=10二、移动平均法二、移动平均法 注注1 1:若采用奇数项移
15、动平均若采用奇数项移动平均(如上例如上例“三项三项”),则平均值是对准在奇项的居中时间处。一次,则平均值是对准在奇项的居中时间处。一次可得趋势值;可得趋势值;若采用偶数项移动平均,则平均值也居中,若采用偶数项移动平均,则平均值也居中,因未对准原来的时间,还要再计算一次平均数,因未对准原来的时间,还要再计算一次平均数,故一般都用奇数项移动平均。故一般都用奇数项移动平均。注注2 2:修匀后的数列,较原数列项数少。修匀后的数列,较原数列项数少。(在进在进行统计分析时,若需要两端数据,则此法不宜行统计分析时,若需要两端数据,则此法不宜使用使用)注注3 3:取几项进行移动平均为好,一般若现象有取几项进行
16、移动平均为好,一般若现象有周期变动,则以周期为长度。例,季度资料周期变动,则以周期为长度。例,季度资料可四项移动平均;各年月资料,可十二项移可四项移动平均;各年月资料,可十二项移动平均;五年一周期,可五项移动平均。移动平均;五年一周期,可五项移动平均。移动平均法可消除周期变动。动平均法可消除周期变动。月份123456789101112y50.5455251.550.455.55358.45759.25860.5四项移动平均 49.8 49.7 52.4 52.6 54.3 56.0 56.9 58.2 58.7二项移正yc49.851.152.553.555.256.557.658.5用四项移
17、动平均后的资料作图,趋势更明显,上升得更均匀,可见修匀的项数越多,效果越好。(但丢掉的数据多一些)仍用上例资料:三、最小平方法三、最小平方法 即对即对原有动态数列配合一条适当的趋势线来进行修匀。原有动态数列配合一条适当的趋势线来进行修匀。这条趋势线可以是直线,也可以是曲线;这条趋势线这条趋势线可以是直线,也可以是曲线;这条趋势线必须满足最基本的要求。即:必须满足最基本的要求。即:直线方程直线方程当当现象的发展,其逐期增长量大体上相等时。现象的发展,其逐期增长量大体上相等时。该方程的一般形式为该方程的一般形式为:用高等数学求偏导数方法,得到以下联立方程组:为使计算方便,可设t:奇数项奇数项:偶数
18、项偶数项:这样使,即上述方程组可简化为:抛物线方程抛物线方程例例当当现象的发展,其二级增长量大体上相时现象的发展,其二级增长量大体上相时。指数曲线方程指数曲线方程例题见教材例题见教材P167-168P167-168当当现象的发展,环比增长速度大体上相等时。现象的发展,环比增长速度大体上相等时。该方程的一般形式为该方程的一般形式为:第五节第五节 季度变动的测定与预测季度变动的测定与预测 一、季节变动分析的意义一、季节变动分析的意义测测定季节变动的资料时间至少要有三个周期以上,定季节变动的资料时间至少要有三个周期以上,如季节资料,至少要有如季节资料,至少要有1212季,月度资料至季,月度资料至少要
19、有少要有3636个月等,以避免资料太少而产生偶然个月等,以避免资料太少而产生偶然性。性。测定季节变动的方法有二种:测定季节变动的方法有二种:按按月平均法,不考虑长期趋势的影响月平均法,不考虑长期趋势的影响(假定不存假定不存在长期趋势在长期趋势),直接利用原始动态数列来计算;,直接利用原始动态数列来计算;移移动平均趋势剔除法,即考虑长期趋势的存在,动平均趋势剔除法,即考虑长期趋势的存在,剔除其影响后再进行计算,故常用此法。剔除其影响后再进行计算,故常用此法。二、按月平均法测定季节变动二、按月平均法测定季节变动 也称按季平均法。若为月度资料就按月平均;若为也称按季平均法。若为月度资料就按月平均;若为季度资料则按季平均。季度资料则按季平均。其其步骤如下:步骤如下:列表,将各年同月列表,将各年同月(季季)的数值列在同一栏内;的数值列在同一栏内;将各年同月将各年同月(季季)数值加总,并求出月数值加总,并求出月(季季)平均平均 数;数;将所有同月将所有同月(季季)数值加总,求出总的月数值加总,求出总的月(季季)平均平均数;数;求季节比率求季节比率(或季节指数或季节指数)。例:见例:见P171三、移动平均趋势剔除法测定季节变动三、移动平均趋势剔除法测定季节变动 例:见例:见P172-174P172-174End of Chapter 4
限制150内