结构力学ppt课件.PPT
《结构力学ppt课件.PPT》由会员分享,可在线阅读,更多相关《结构力学ppt课件.PPT(93页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、结构力学ppt课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第第1313章章 结构的动力计算结构的动力计算13.1 13.1 动力计算概述动力计算概述一、动力计算的特点一、动力计算的特点(2 2)研究单自由度及多自由度的自由振动、强迫振动。)研究单自由度及多自由度的自由振动、强迫振动。1 1、内容:、内容:(1 1)研究动力荷载作用下,结构的内力、位移等计算原理)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。求出它们的最大值并作为结构设计的依据。
2、和计算方法。求出它们的最大值并作为结构设计的依据。2 2、静荷载和动荷载、静荷载和动荷载 (1 1)静荷载:荷载的大小和方向不随时间变化(如梁板)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。自重)。(2 2)动荷载:荷载的大小和方向随时间变化,需要考虑)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力(惯性力(与影响线不同与影响线不同)。)。3 3、特点、特点 (2 2)内力与荷载不能构成静平衡。必须考据惯)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理,加惯性力后,将动力问题转性力。依达朗伯原理,加惯性力后,将动力问题转化为静力问题。化为静力问题。(1 1)必须考虑惯性力(
3、当)必须考虑惯性力(当=时,共振时,共振)。(3 3)分析自由振动即求自振频率、振型、阻尼)分析自由振动即求自振频率、振型、阻尼参数等是求强迫振动动力反应的前提和准备。参数等是求强迫振动动力反应的前提和准备。(4 4)学习循序渐进:)学习循序渐进:第第13章章二、动力荷载的种类二、动力荷载的种类 P(tP(t)t to oP(t)=psin t 1 1、简谐周期荷载:、简谐周期荷载:荷载按正弦余弦规律变化(偏荷载按正弦余弦规律变化(偏心转子对结构的冲击)。心转子对结构的冲击)。2 2、冲击荷载:、冲击荷载:荷载在短时间内急剧增加或减少荷载在短时间内急剧增加或减少(锻锤对基础的冲击、爆炸等)。(
4、锻锤对基础的冲击、爆炸等)。P(t)totdP(t)totd第第13章章3 3、脉动风压、脉动风压4 4、地震荷载、地震荷载三、振动体系的自由度三、振动体系的自由度 1 1、基本未知量:、基本未知量:以质点位移作为基本未知量。结以质点位移作为基本未知量。结构上全部质点有几个独立的位移,就有几个独立的构上全部质点有几个独立的位移,就有几个独立的未知量。未知量。2 2、自由度:、自由度:结构运动时,确定全部质点位置所需结构运动时,确定全部质点位置所需要的独立几何参变量的数目要的独立几何参变量的数目(与几何组成自由度不同)(与几何组成自由度不同)。第第13章章 (2 2)与几何组成分析中的自由度不同
5、。)与几何组成分析中的自由度不同。对梁和刚架对梁和刚架 (1 1)略去轴向变形)略去轴向变形 (2 2)略去惯性力矩)略去惯性力矩 只有一个自由度只有一个自由度M=ml分布质量,有无限自由度分布质量,有无限自由度ml l 3 3、有关自由度的几点说明:、有关自由度的几点说明:(1 1)基本未知量数目与自由度数目是一致的。前者强调)基本未知量数目与自由度数目是一致的。前者强调独立位移数目,后者强调独立坐标数目。独立位移数目,后者强调独立坐标数目。(3 3)一般采用)一般采用“集中质量法集中质量法”,将连续分布的质量集中,将连续分布的质量集中为几个质点研究(为几个质点研究(“广义位移法广义位移法”
6、、“有限单元法有限单元法”)。)。第第13章章 (4 4)并非一个质量集中点一个自由度(分析下例)。)并非一个质量集中点一个自由度(分析下例)。(5 5)结构的自由度与是否超静定无关。)结构的自由度与是否超静定无关。2 2个自由度个自由度2 2个自由度个自由度4 4个自由度个自由度静定结构静定结构6 6次超静定结构次超静定结构3 3次超静定结构次超静定结构第第13章章 四、体系振动的衰减现象,阻尼力四、体系振动的衰减现象,阻尼力 (6 6)可用加链杆的方法确定自由度。)可用加链杆的方法确定自由度。1 1、自由振动的衰减:、自由振动的衰减:结构在自由振动时的结构在自由振动时的 振幅随时间逐渐减小
7、振幅随时间逐渐减小 ,直,直至振幅为零、震动停止的现象。至振幅为零、震动停止的现象。第第13章章2 2、引起振幅衰减是因能量损耗,其主要原因有:、引起振幅衰减是因能量损耗,其主要原因有:(2 2)周围介质对振动的阻力。)周围介质对振动的阻力。(1 1)结构材料的内摩擦阻力。)结构材料的内摩擦阻力。(4 4)地基土等的摩擦阻力。)地基土等的摩擦阻力。(5 5)建筑物基础振动引起土体振动,振波传播,)建筑物基础振动引起土体振动,振波传播,能量扩散。能量扩散。(3 3)支座、结点等构件联结处的摩擦力。)支座、结点等构件联结处的摩擦力。第第13章章4 4、粘滞阻尼理论(伏伊特理论)、粘滞阻尼理论(伏伊
8、特理论)阻尼力与体系振动的变形速度成正比,方向与阻尼力与体系振动的变形速度成正比,方向与速度方向相反。速度方向相反。3 3、阻尼、阻尼 使能量耗散的因素,统称为阻尼。使能量耗散的因素,统称为阻尼。式中:式中:c c为阻尼系数;为阻尼系数;y=dy/dt为质点的位移速度;为质点的位移速度;负号表示阻尼力的方向恒与速度方向相反。负号表示阻尼力的方向恒与速度方向相反。第第13章章13.2 13.2 单自由度体系的运动方程单自由度体系的运动方程一、研究单自由度体系振动的重要性一、研究单自由度体系振动的重要性 1 1、是工程上一些实际结构的简化。、是工程上一些实际结构的简化。2 2、是研究复杂动力计算的
9、基础。、是研究复杂动力计算的基础。建筑物基础建筑物基础水塔的水平振动水塔的水平振动第第13章章二、单自由度体系振动的简化模型二、单自由度体系振动的简化模型 mk11ck11cm恢复力简化为一弹簧,恢复力简化为一弹簧,阻尼力简化为一阻尼器阻尼力简化为一阻尼器1 1、弹簧刚度系数(、弹簧刚度系数(k11)使弹簧伸长或压缩单位长度所需之力。使弹簧伸长或压缩单位长度所需之力。2 2、弹簧柔度系数(、弹簧柔度系数(11)在单位力作用下,弹簧的伸长或压缩量。在单位力作用下,弹簧的伸长或压缩量。第第13章章三、单自由度体系运动方程的建立三、单自由度体系运动方程的建立 mk11cy0ysydS(t)WI(t)
10、D(t)P(t)取物块为隔离体取物块为隔离体,其上共作用五个力其上共作用五个力1 1、达朗伯原理是建立运动方程所依据的基本原理。、达朗伯原理是建立运动方程所依据的基本原理。2 2、列动力平衡方程、列动力平衡方程第第13章章3 3、列位移方程、列位移方程S(t)WI(t)D(t)P(t)以弹簧为研究对象以弹簧为研究对象,分析它与分析它与物块联结点处的位移。物块联结点处的位移。y0S(t)任意时刻的位移任意时刻的位移:即即:将将代入上式代入上式,得得:第第13章章13.2 13.2 单自由度体系的自由振动单自由度体系的自由振动一、无阻尼自由振动一、无阻尼自由振动2 2、运动方程及其解的形式、运动方
11、程及其解的形式令令则则其解其解则则 tC2 C y 令令 CC2C1 1 1、特点、特点 (1)(1)无能量耗散无能量耗散,振动一经开始永不休止:振动一经开始永不休止:(2)(2)无振动荷载:无振动荷载:第第13章章3 3、几个术语、几个术语 (1 1)周期:)周期:振动一次所需的时间。振动一次所需的时间。(2 2)工程频率)工程频率 单位时间内的振动次数(与周期互为倒数)。单位时间内的振动次数(与周期互为倒数)。(3 3)频率(圆频率)频率(圆频率)旋转向量的角速度,即体系在旋转向量的角速度,即体系在2 2 秒内的振动秒内的振动次数。自由振动时的圆频率称为次数。自由振动时的圆频率称为“自振频
12、率自振频率”。第第13章章频率定义式:频率定义式:频率计算式:频率计算式:周期计算式:周期计算式:自振频率是体系本身的固有属性,与体系的自振频率是体系本身的固有属性,与体系的刚度、质量有关,与激发振动的外部因素无关。刚度、质量有关,与激发振动的外部因素无关。第第13章章4 4、微分方程中各常数由初始条件确定、微分方程中各常数由初始条件确定 代入:代入:将将时时得:得:于是:于是:第第13章章进一步可确定式进一步可确定式中的中的c和和 cc2c15 5、分析例题、分析例题13-113-1、13-213-2(P83P83)二、有阻尼的自由振动二、有阻尼的自由振动 1 1、振动方程及其解、振动方程及
13、其解则则令令特征方程特征方程特征根特征根第第13章章分三种情况讨论:(分三种情况讨论:(1 1)k k,小阻尼情况,小阻尼情况(2 2)k k,大阻尼情况,大阻尼情况(3 3)k=k=,临界阻尼情况,临界阻尼情况或:或:(1 1)k k,小阻尼情况,小阻尼情况式中式中 称为称为“有阻尼振动的圆频率有阻尼振动的圆频率”称为称为“有阻尼振动的自振周期有阻尼振动的自振周期”y y r rt t2 2(一对共轭复根)(一对共轭复根)结论:振幅结论:振幅Ce-kt按负指数函数衰减的自由振动。按负指数函数衰减的自由振动。第第13章章(2 2)k k,大阻尼情况,大阻尼情况特征根特征根(两个不等的实根)(两
14、个不等的实根)令令则则结论:上式中不含简谐振动因子,阻尼使能量耗尽,结论:上式中不含简谐振动因子,阻尼使能量耗尽,故不振动。故不振动。或或通解通解 第第13章章y yy yt tt to oo o(3 3)k=k=,临界阻尼情况,临界阻尼情况特征根特征根(两个相同的实根)(两个相同的实根)结论:由振动过渡到非振动的临界状态。结论:由振动过渡到非振动的临界状态。大阻尼情况下的振动曲线:大阻尼情况下的振动曲线:通解通解 第第13章章2 2、阻尼系数的确定、阻尼系数的确定(1 1)阻尼比的概念)阻尼比的概念 实际工程中实际工程中K K,属于小阻尼衰减性振动。通,属于小阻尼衰减性振动。通常以阻尼比作为
15、基本参数。常以阻尼比作为基本参数。根据定义根据定义临界状态时临界状态时故阻尼系数故阻尼系数第第13章章(2 2)阻尼比的确定)阻尼比的确定y yt t于是:于是:依上式可绘出振动图形:依上式可绘出振动图形:第第13章章定义定义(对数递减量)(对数递减量)(3 3)阻尼系数的确定)阻尼系数的确定根据实测两个相邻振幅来计算阻尼比,进而求阻尼系数。根据实测两个相邻振幅来计算阻尼比,进而求阻尼系数。实测振幅实测振幅第第13章章解解(1 1)对数递减量:)对数递减量:(2 2)阻尼比:)阻尼比:(3 3)阻尼系数:)阻尼系数:(4 4)振动)振动5 5周期后的振幅:周期后的振幅:例题例题13-3 13-
16、3 图示门式刚架作自由振动。图示门式刚架作自由振动。t=0t=0时,时,y y0 0=0.5cm=0.5cm,y y0 0=0=0。测得测得r r=1.5 S;=1.5 S;一周期后一周期后,y,y1 1=0.4cm=0.4cm。求门架的阻尼。求门架的阻尼系数及振动系数及振动1010周期后的振幅周期后的振幅 y y1010。.PM=1000tEI=第第13章章13.3 13.3 单自由度体系在简谐荷载单自由度体系在简谐荷载 作用下的动力计算作用下的动力计算一、考虑阻尼时运动方程及其解一、考虑阻尼时运动方程及其解 1 1、运动方程、运动方程则:则:设:设:通解包括两部分:通解包括两部分:第第13
17、章章2 2、齐次解:、齐次解:特征方程:特征方程:特征根:特征根:3 3、特解(待定系数法):、特解(待定系数法):设:设:将上式代入原方程后,可确定将上式代入原方程后,可确定A A1 1、A A2 2:第第13章章设:设:进一步,可得:进一步,可得:于是可将特解写为于是可将特解写为 的形式。的形式。将各量代入后,可求出特解:将各量代入后,可求出特解:4、通解、通解第第13章章利用利用 可确定通解中的常数可确定通解中的常数C C1 1、C C2 2,于是:,于是:5 5、稳态解(稳态解(分析上式或直接分析通解,达到稳态后)分析上式或直接分析通解,达到稳态后)第第13章章达到稳态时运动方程的解为
18、达到稳态时运动方程的解为 运动方程运动方程二、动位移幅值的计算(考虑阻尼)二、动位移幅值的计算(考虑阻尼)利用利用和和(A AS S为干扰力幅值产生的静位移)为干扰力幅值产生的静位移)运动方程的解(任意时刻的位移)可改写为:运动方程的解(任意时刻的位移)可改写为:1 1、考虑阻尼、考虑阻尼 第第13章章动位移幅值为:动位移幅值为:于是:于是:称为称为“动力系数动力系数”或或“放大系数放大系数”。令:令:第第13章章2 2、不考虑阻尼时动位移幅值的计算、不考虑阻尼时动位移幅值的计算不考虑阻尼时,令动力放大系数计算式中不考虑阻尼时,令动力放大系数计算式中3 3、共振时动位移幅值的计算、共振时动位移
19、幅值的计算共振时,令动力放大系数计算式中共振时,令动力放大系数计算式中放大系数:放大系数:放大系数:放大系数:动位移幅值:动位移幅值:动位移幅值:动位移幅值:第第13章章4 4、影响动位移幅值大小的因素、影响动位移幅值大小的因素(1 1)与干扰力幅值成正比;)与干扰力幅值成正比;(2 2)与)与/的比值有关的比值有关;(a a)当)当 时时-动荷载可作为静荷载处理动荷载可作为静荷载处理;(b b)当)当 时时-与阻尼无关,结构可视为静止;与阻尼无关,结构可视为静止;(c c)当)当=时时-共振,设计时应避免共振。由于阻尼的存在,共振,设计时应避免共振。由于阻尼的存在,振幅不会无限大。振幅不会无
20、限大。第第13章章 D D与与 和和的关系图的关系图D D4.04.03.03.02.02.01.01.00 00.50.51.01.02.02.01.51.5=0=0=1=1=0.2=0.2=0.5=0.55 5、位移和振动荷载之间的相位关系、位移和振动荷载之间的相位关系(1)当不计阻尼()当不计阻尼(=0)时)时(a)当)当/1 时时:=0,A与与P同相位;同相位;(b)当)当/1 时时:=,A与与P反相位。反相位。有阻尼振动的特解:有阻尼振动的特解:式中:式中:tan 0,且为正值且为正值tan 0/2 tan 0,且为负值且为负值第第13章章02.03.0=0=1=0.2=0.5=01
21、.0与与 和和的关系图的关系图(2 2)当考虑阻尼)当考虑阻尼时时(a a)当)当/1 1时时-0-0 /2,A/2,A与与P P有相位差;有相位差;(b b)当)当/1 1时时-/2/2 ,A A与与P P有相位差;有相位差;(c c)当)当/=1=1时时-=-=/2/2,A A与与P P相位差为相位差为/2/2。1 1、强迫振动达到稳态时,振动荷载输入的能量等于体、强迫振动达到稳态时,振动荷载输入的能量等于体系振动过程中消耗的能量。系振动过程中消耗的能量。三、强迫振动时的能量转换三、强迫振动时的能量转换 2 2、依能量关系同样可以推导出振幅的计算式:、依能量关系同样可以推导出振幅的计算式:
22、第第13章章1 1、一般方法、一般方法 由于结构的弹性内力与位移成正比,所以位移达到由于结构的弹性内力与位移成正比,所以位移达到幅值时,内力也应达到幅值(不计阻尼时,位移与动荷幅值时,内力也应达到幅值(不计阻尼时,位移与动荷载同相位)。载同相位)。将惯性力幅值和干扰力幅值同时加在体系上,而后将惯性力幅值和干扰力幅值同时加在体系上,而后按静力学方法求解,即可求得反力和内力的幅值。按静力学方法求解,即可求得反力和内力的幅值。四、动内力幅值的计算四、动内力幅值的计算第第13章章m2 2、比例算法、比例算法 当动力荷载与惯性力共线时,由于结构的位移与外力当动力荷载与惯性力共线时,由于结构的位移与外力成
23、正比,位移、内力同时达到幅值,故可以按比例计算。成正比,位移、内力同时达到幅值,故可以按比例计算。将惯性力幅值放大将惯性力幅值放大 倍后加在质量处,倍后加在质量处,而后按静力学而后按静力学方法求解即可。方法求解即可。时,位移为时,位移为时,位移最大时,位移最大依比例关系:依比例关系:第第13章章mm 1 1、纯强迫振动的振幅可由干扰力振幅、纯强迫振动的振幅可由干扰力振幅P P所引起的静位移所引起的静位移A AS S放大放大 倍而得到。倍而得到。五、计算动位移幅值、动内力幅值时应注意的问题五、计算动位移幅值、动内力幅值时应注意的问题(1 1)当结构的柔度系数易求时)当结构的柔度系数易求时 2 2
24、、若荷载不直接作用在质点上,则应以、若荷载不直接作用在质点上,则应以-R-Ripip 代替代替P P,或以或以 ipip代替代替P P 1111。第第13章章(2 2)当结构的刚度系数易求时)当结构的刚度系数易求时mmm 3 3、当动力荷载与惯性力共线时,、当动力荷载与惯性力共线时,既是动既是动位移放大系数,位移放大系数,也是各截面动内力和动位移的放大系数。也是各截面动内力和动位移的放大系数。例题例题13-4 13-4 在梁的中点作用有一重量为在梁的中点作用有一重量为W=30kNW=30kN的动力机械,已知梁的弹的动力机械,已知梁的弹性模量性模量E=210GPaE=210GPa,惯性矩,惯性矩
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 力学 ppt 课件
限制150内