空间向量在立几中的应用演示教学.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《空间向量在立几中的应用演示教学.ppt》由会员分享,可在线阅读,更多相关《空间向量在立几中的应用演示教学.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量在立几中的应用 用空间向量处理用空间向量处理“平行平行”问题问题 RDBCAA1QPNMD1C1B1例例2.在正方体在正方体ABCD-A1B1C1D1中,中,P、Q分别是分别是A1B1和和BC上的动点,且上的动点,且A1P=BQ,M是是AB1的中点,的中点,N是是PQ的的中点中点.求证:求证:MN平面平面AC.法法:M是中点,是中点,N是中点是中点 MNRQ MN平面平面ACDBCAA1QPNMD1C1B1法法:作作PP1AB于于P1,作作MM1 AB于于M1,连结连结QP1,作作NN1 QP1于于N1,连结连结M1N1N1M1P1NN1PP1 MM1AA1又又NN1、MM1均等于边长
2、的一半均等于边长的一半故故MM1N1N是平行四边形,故是平行四边形,故MNM1N1MN平面平面ACDBCAA1QPNMD1C1B1zyxo法法3:建立如图所:建立如图所示的空间直角坐示的空间直角坐标系标系o-xyz设正方形边长为设正方形边长为2,又又A1P=BQ=2x则则P(2,2x,2)、Q(2-2x,2,0)故故N(2-x,1+x,1),而而M(2,1,1)所以向量所以向量 (-x,x,0),又平面,又平面AC的法的法向量为向量为 (0,0,1),又又M不在平面不在平面AC 内,所以内,所以MN平面平面ACDCBAD1C1B1A1例例3.在正方体在正方体ABCD-A1B1C1D1中,求证:
3、中,求证:平面平面A1BD平面平面CB1D1法法1:平行四边行平行四边行A1BCD1 A1BD1C平行四边形平行四边形DBB1D1 B1D1BD于是平面于是平面A1BD平面平面CB1D1DCBAD1C1B1A1ozyx法法2:建立如图所示的空:建立如图所示的空间直角坐标系间直角坐标系o-xyz设正方形边长为设正方形边长为1,则向量则向量设平面设平面BDA1的法向量的法向量为为则有则有x+z=0 x+y=0令令x=1,则得方程组的解为则得方程组的解为x=1 y=-1 z=-1故平面故平面BDA1的法向量为的法向量为同理可得平面同理可得平面CB1D1的法向量为的法向量为则显然有则显然有即得两平面即
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 中的 应用 演示 教学
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内