立体几何初步章节复习教学文案.ppt
《立体几何初步章节复习教学文案.ppt》由会员分享,可在线阅读,更多相关《立体几何初步章节复习教学文案.ppt(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何初步章节复习一一空空间间几几何何体体1空间几何体的结构空间几何体的结构柱、锥、台、球的结构特征柱、锥、台、球的结构特征简单几何体的结构特征简单几何体的结构特征2三视图三视图柱、锥、台、球的三视图柱、锥、台、球的三视图简单几何体的三视图简单几何体的三视图3直观图直观图斜二测画法斜二测画法平面图形平面图形空间几何体空间几何体4柱、锥、台、球的表面积与体积柱、锥、台、球的表面积与体积画图识图柱柱锥锥台台球球圆锥圆锥圆台圆台多面体多面体旋转体旋转体圆柱圆柱棱柱棱柱棱锥棱锥棱台棱台概念概念结构特征结构特征侧面积侧面积体积体积 球球概念概念性质性质侧面积侧面积体积体积由上述几何体组合在一起形成的几
2、何体称为简单组合体由上述几何体组合在一起形成的几何体称为简单组合体棱柱棱锥棱台圆柱圆锥圆台球多面体旋转体 1 柱、锥、台、球及简单组合体简单组合体1、柱、锥、台、球及简单组合体棱柱的性质棱柱的性质 1.1.侧棱都相等,侧面都是平侧棱都相等,侧面都是平行四边形;行四边形;2.2.两个底面与平行于底面的两个底面与平行于底面的截面都是全等的多边形;截面都是全等的多边形;3.3.平行于侧棱的截面都是平平行于侧棱的截面都是平行四边形;行四边形;棱柱的分类棱柱的分类按按边边数数分分按侧按侧棱是棱是否与否与底面底面垂直垂直分分斜棱柱斜棱柱 直棱柱直棱柱 正棱柱正棱柱三棱柱三棱柱 四棱柱四棱柱 五棱柱五棱柱
3、四棱柱四棱柱平行六面体平行六面体长方体长方体直平行六面体直平行六面体正四棱柱正四棱柱正方体正方体底面变为底面变为平行四边形平行四边形侧棱与底面侧棱与底面垂直垂直底面是底面是矩形矩形底面为底面为正方形正方形侧棱与底面侧棱与底面边长相等边长相等几种六面体的关系:几种六面体的关系:几种六面体的关系:几种六面体的关系:棱锥棱锥 SABCD顶点顶点侧面侧面侧棱侧棱底面底面结构特征结构特征 有一个面是有一个面是多边形,其余各多边形,其余各面都是有一个公面都是有一个公共顶点的三角形。共顶点的三角形。按底面多边形的边数,可以分为三棱锥、四棱按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、锥、五棱锥、ABC
4、DS棱锥的分类棱锥的分类 正棱锥:底面是正多边形,并且顶点在底面内的正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心的棱锥。射影是底面中心的棱锥。【知识梳理】【知识梳理】棱锥棱锥 1、定义:定义:有一个面是多边形,其余各面是有一个公共顶点的有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。三角形,由这些面所围成的几何体叫棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。的射影是底面中心,这样的棱锥叫做正棱锥。2、性质性质、正棱锥的性质、正棱锥的性质(1)各侧棱相等,各侧面
5、都是全等的等腰三角形。各侧棱相等,各侧面都是全等的等腰三角形。(2)棱锥的高、斜高和斜高在底面上的射影组成一个直棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。组成一个直角三角形。正棱锥性质正棱锥性质棱锥的高、斜高和斜高在棱锥的高、斜高和斜高在底面的射影组成一个直角底面的射影组成一个直角三角形。棱锥的高、侧棱三角形。棱锥的高、侧棱和侧棱在底面的射影组成和侧棱在底面的射影组成一个直角三角形一个直角三角形Rt SOHRt SOBRt SHBRt BHO棱台由棱锥截得而成,所以在棱台中也有类棱
6、台由棱锥截得而成,所以在棱台中也有类似的直角梯形。似的直角梯形。OSHBCDA棱台棱台结构特征结构特征ABCDABCD 用一个平行于棱锥用一个平行于棱锥底面的平面去截棱锥底面的平面去截棱锥,底底面与截面之间的部分是面与截面之间的部分是棱台棱台.圆锥圆锥S顶点顶点ABO底面底面轴轴侧侧面面母母线线结构特征结构特征 以直角三角形的一条以直角三角形的一条直角边所在直线为旋转轴直角边所在直线为旋转轴,其余两边旋转形成的曲面其余两边旋转形成的曲面所围成的几何体叫做圆锥。所围成的几何体叫做圆锥。圆台圆台结构特征结构特征OO 用一个平行于圆用一个平行于圆锥底面的平面去截圆锥底面的平面去截圆锥锥,底面与截面之
7、间的底面与截面之间的部分是圆台部分是圆台.球球结构特征结构特征O半径半径球心球心 以半圆的直径所以半圆的直径所在直线为旋转轴在直线为旋转轴,半半圆面旋转一周形成的圆面旋转一周形成的旋转体旋转体.O S1、圆锥的展开图是一个扇形:、圆锥的展开图是一个扇形:其运算常用到一个扇形和一个直角三角形其运算常用到一个扇形和一个直角三角形n总结:运算常用图形总结:运算常用图形2、圆台的展开图是一个扇环:、圆台的展开图是一个扇环:其运算常用到两个扇形和两个直角三角形其运算常用到两个扇形和两个直角三角形还台为锥还台为锥总结:运算常用图形总结:运算常用图形3、球.o 总结:运算常用图形总结:运算常用图形SABCD
8、OM 4、正棱锥中的计算常用到四个直角三、正棱锥中的计算常用到四个直角三角形角形总结:运算常用图形总结:运算常用图形A1C1B1ABCOD1DO15、正棱台中的计算常用到两个直角、正棱台中的计算常用到两个直角梯形和两个直角三角形梯形和两个直角三角形总结:运算常用图形总结:运算常用图形EF 正四棱锥底面正方形边长为正四棱锥底面正方形边长为4 cm,高,高与斜高的夹角为与斜高的夹角为30,求正四棱锥的侧面,求正四棱锥的侧面积和表面积积和表面积(单位:单位:cm2)S棱锥侧棱锥侧=32(cm2)S表面积表面积=S侧侧+S底底=48(cm2)直角三角形的三边长分别为直角三角形的三边长分别为3cm3cm
9、、4cm4cm、5cm5cm,绕三边旋转一周分别形成三,绕三边旋转一周分别形成三个几何体个几何体.说明它们的结构特征说明它们的结构特征思考思考3 34 45 54 43 35 54 43 35 52.直观图:斜二测画法步骤是:斜二测画法步骤是:(1 1)在已知图形中取互相垂直的)在已知图形中取互相垂直的x轴和轴和y 轴,轴,两轴相交于点两轴相交于点O。画直观图时,把它们画成。画直观图时,把它们画成对应的对应的x轴和轴和y轴,两轴交于点轴,两轴交于点O,且使,且使xOy=45(或(或135),它们确定的平面),它们确定的平面表示水平面。表示水平面。(2 2)已知图形中平行于)已知图形中平行于x轴
10、或轴或y轴的线段,轴的线段,在直观图中分别画成平行于在直观图中分别画成平行于x轴或轴或y轴的线轴的线段。段。(3 3)已知图形中平行于)已知图形中平行于x轴的线段,在直观轴的线段,在直观图中保持原长度不变,平行于图中保持原长度不变,平行于y轴的线段,轴的线段,长度为原来的一半。长度为原来的一半。平行、相交性保持不变平行、相交性保持不变 一平面图形的直观图如图所示,它原来的面一平面图形的直观图如图所示,它原来的面积是(积是()22oABxyA.4 B.C.D.8AS原=S直S直=S原 2、三视图三视图的画法三视图的画法1.三视图的位置三视图的位置2.三视图的长、宽、高的关系三视图的长、宽、高的关
11、系 主、俯视图主、俯视图长对正长对正,主、左视图主、左视图高高平齐平齐,俯、左视图,俯、左视图宽相等宽相等.3.实、虚线的应用实、虚线的应用能看见的轮廓线和棱用实线表示,不能看能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示见的轮廓线和棱用虚线表示.正视图方向正视图方向侧视图方向侧视图方向俯视图方向俯视图方向长长高高宽宽宽相等宽相等长对正长对正高平齐高平齐正视图正视图侧视图侧视图俯视图俯视图侧视图侧视图俯视图俯视图正视图正视图三视图的位置三视图的位置 2、三视图与直观图 将正三棱柱截去三个角(如图将正三棱柱截去三个角(如图1 1所示分别是所示分别是三边的中点)得到几何体如图三边的中
12、点)得到几何体如图2 2,则该几何体按,则该几何体按图图2 2所示方向的侧视图(或称左视图)为(所示方向的侧视图(或称左视图)为()EBABEBBECBED A EFD IAHG BC侧视侧视图图1图图2 E FDCA BPQ如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的表面积是_ 俯视图 主视图 左视图 思考 ABCP解:根据三视图,可得这个几何体为三棱锥P-ABC.三条侧棱长都为1,且两两垂直.三个侧面的面积和为 ,底面积为 ,故表面积为 .3、柱、锥、台、球的表面积和体积S正 棱 台 侧 (cc)hS直棱柱侧chS正棱锥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 初步 章节 复习 教学 文案
限制150内