《初中优秀数学教案模板5篇.docx》由会员分享,可在线阅读,更多相关《初中优秀数学教案模板5篇.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中优秀数学教案模板5篇初中优秀数学教案模板篇1教学目标:1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。2、过程与方法:通过观察,归纳一元一次方程的概念。3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。教学重点:归纳一元次方程的概念教学难点:感受方程作为刻画现实世界有效模型的意义.教学过程:一、情景导入:我能猜出你们的年龄,相信吗?只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.问:你的年龄乘以2加3等于多少?学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?学生讨论并回答二、知识探究:
2、1、方程的教学(投影演示)小彬和小明也在进行猜年龄游戏,我们来看一看。找出这道题中的等量关系,列出方程.大家观察,这两个式子有什么特点。讨论并回答:什么是方程?方程有哪些特点?2、判断下列式子是不是方程?(1)X+2=3(是)(2)X+3Y=6(是)(3)3M-6(不是)(4)1+2=3(不是)(5)X+35(不是)(6)Y-12=5(是)三、合作交流1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?情景
3、二:第五次全国人口普查统计数据(20_年3月28日新华社公布)截至20_年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?2X5=2140+15X=100X(1+153.94)=36112X+(X+12)=2002Y+(Y12)=200在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫
4、一元一次方程。问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程四、随堂练习1、投影趣味习题,2、做一做下面有两道题,请选做一题。(1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。五、课堂小节1、这节课你学到了什么?2、这节课给你印象最深的是什么?六、作业:分组布置初中优秀数学教案模板篇2教学目标1.知识与技能能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法经历类比带有括号的有理数
5、的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.情感态度与价值观培养学生主动探究、合作交流的意识,严谨治学的学习态度.重、难点与关键1.重点:去括号法则,准确应用法则将整式化简.2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.3.关键:准确理解去括号法则.教具准备投影仪.教学过程一、新授利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为10
6、0t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米冻土地段与非冻土地段相差100t-120(t-0.5)千米上面的式子、都带有括号,它们应如何化简?思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=
7、+120t-60-120(t-0.5)=-120+60比较、两式,你能发现去括号时符号变化的规律吗?思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号的每一项
8、的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.二、范例学习例1.化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小
9、时后甲船比乙船多航行多少千米?教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.解答过程按课本.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,
10、直接去括号.三、巩固练习1.课本第68页练习1、2题.2.计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2.5xy2思路点拨:一般地,先去小括号,再去中括号.四、课堂小结去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.五、作业布置1.课本第71页习题2.2第2、3、5、8题.2.选用课时作业设计.初中优秀数学教案模板篇3教学目的1、使学生了解无理数和实数的概念,掌握实数的分
11、类,会准确判断一个数是有理数还是无理数。2、使学生能了解实数绝对值的意义。3、使学生能了解数轴上的点具有一一对应关系。4、由实数的分类,渗透数学分类的思想。5、由实数与数轴的一一对应,渗透数形结合的思想。教学分析重点:无理数及实数的概念。难点:有理数与无理数的区别,点与数的一一对应。教学过程一、复习1、什么叫有理数?2、有理数可以如何分类?(按定义分与按大小分。)二、新授1、无理数定义:无限不循环小数叫做无理数。判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。3、按课本中列表,将各数间的联系介绍一下。除了按定义还能按大小写出列表。4、实数的相反数:5、实数的绝对值:6、实数
12、的运算讲解例1,加上(3)若|x|=(4)若|x-1|=,那么x的值是多少?例2,判断题:(1)任何实数的偶次幂是正实数。()(2)在实数范围内,若|x|=|y|则x=y。()(3)0是最小的实数。()(4)0是绝对值最小的实数。()解:略三、练习P148练习:3、4、5、6。四、小结1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。五、作业1、P150习题A:3。2、基础训练:同步练习1。初中优秀数学教案模板篇4一、教材分析:反比例函数的图象与性质
13、是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。二、教学目标分析根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:1、掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图
14、象;掌握图象的特征以及由函数图象得到的函数性质。2、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3、通过学习培养学生积极参与和勇于探索的精神。三、教学重点难点分析本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;难点则是如何抓住特征准确画出反比例函数的图象。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。四、教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主
15、动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究讨论交流总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。五、学法指导本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导
16、学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。六、教学过程(一)复习引入反函数解析式练习1:写出下列各题的关系式:(1)正方形的周长C和它的一边的长a之间的关系(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系(3)矩形的面积为10时,它的长x和宽y之间的关系(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。问题2:
17、那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。例题1:已知变量y与x成反比例,且当x=2时,y=9(1)写出y与x之间的函数解析式(2)当x=3、5时,求y的值(3)当y=5时,求x的值通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。课堂练习:已知x与y成
18、反比例,根据以下条件,求出y与x之间的函数关系式(1)x=2,y=3(2)x=,y=通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。(二)探究学习1函数图象的画法问题3:如何画出正比例函数的图象?通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。问题4:那反比例函数的图象应该怎样去画呢?在教学过程中可以引导学生仿照正比例函数图象的的画法。设想的教学设计是:(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;(2)老师边巡视,边指导,用实物投影
19、仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:(1)在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找
20、到点。(2)在“连线”这一环节学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。从而引导学生画出正确的函数图象。(3)图象与x轴或y轴相交在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第学画反比例函数图象的过
21、程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。巩固练习:画出函数和的图象通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。(三)探究学习2函数图象性质1、图象的分布情况问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1)引导学生对比正比例
22、函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;(3)组织小组讨论来归纳出反比例函数的一条性质:当k0时,函数图象的两支分别在第一、三象限内;当k0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k0,分别比较在第三象限x=2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师
23、再请学生做小结:必须限定在每一个象限内,才有以上性质成立。问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。(四)备用思考题1、反比例函数的图象在第一、三象限,求a的取值范围2、当m为何值时,y是x的正比例函数;当m为何值时,y是x的反比例函数(五)小结:初中优秀数学教案模板篇5一、教材分析(一)教材地位
24、这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学
25、充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。教法分析:结合七年级学生和本节教
26、材的特点,在教学中采用“问题情境建立模型解释应用拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5。感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20_年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。(2)某楼房三楼失火,消防队员赶来救火,
27、了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。(二)实验操作模型构建1、等腰直角三角形(数格子)2、一般直角三角形(割补)问题一:对于等腰直角三角形,正方形、的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。问题二:对于一般的直角三角形,正方形、的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图
28、:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。通过以上实验归纳总结勾股定理。设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊一般的认知规律。(三)回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。四、知识拓展巩固深化基础题,情境题,探索题。设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根
29、据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。五、感悟收获布置作业:这节课你的收获是什么?作业:1、课本习题2、12、搜集有关勾股定理证明的资料。六、板书设计:探索勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么七、设计说明:1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。
限制150内