《初中优秀数学教案设计5篇.docx》由会员分享,可在线阅读,更多相关《初中优秀数学教案设计5篇.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中优秀数学教案设计5篇初中优秀数学教案设计篇1教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。(2)能熟练进行有理数的减法法则。2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。重点、难点1、重点:有理数减法法则及其应用。2、难点:有理数减法法则的应用符号的改变。教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的?(-5)+3=3+(5)=3+(+5)=2、-(-2)=-(+23)=,+-(-2)=3、20_的某天,北京市的最高气
2、温是-20C,最低气温是-100C,这天北京市的温差是多少?导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?3、通过以上列式,你能发现减法运算与加法运算的关系吗?(学生分组讨论,大胆发言,总结有理数的减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样
3、理解?(3)你能用字母表示有理数减法法则吗?三、应用迁移,巩固提高1、P.24例1计算:(1)0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。四、总结反思(1)有理数减法法则:减去一个数,等于加上这个数的相反数。(2)有理数减法的
4、步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。五、作业P.27习题1.4A组1、2、5、6备选题填空:比2小-9的数是。比+2小。若小于0,是非负数,则2-30。初中优秀数学教案设计篇2一、教学目的【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。【教学难点】数形结合的思想方法。三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也
5、有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取
6、合适的长度为单位长度。提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?初中优秀数学教案设计篇3一、内容特点在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用
7、有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。二、设计思路整体设计思路:无理数的引入无理数的表示实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。学习对象实数概念及其运算;学习过程通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式操作、猜测、抽象、验证、类比、推理等。具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。第
8、一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。第六节:实数
9、。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。4.淡化二次根式的概念。初中优秀数学教案设计篇4教学目标1.知识与技能能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.情感态度与价值观培
10、养学生主动探究、合作交流的意识,严谨治学的学习态度.重、难点与关键1.重点:去括号法则,准确应用法则将整式化简.2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.3.关键:准确理解去括号法则.教具准备投影仪.教学过程一、新授利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米
11、冻土地段与非冻土地段相差100t-120(t-0.5)千米上面的式子、都带有括号,它们应如何化简?思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60-120(t-0.5)=-120+60比较、两式,你能发现去括号时符号变化的规律吗?思路点拨
12、:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.二、范例学习例1.
13、化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.思路点拨:根据船顺
14、水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.解答过程按课本.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.三、巩固练习1.课本第68页练习1、2题.2.计算:5xy2-3xy2-(4xy2-2x2y)+
15、2x2y-xy2.5xy2思路点拨:一般地,先去小括号,再去中括号.四、课堂小结去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。五、作业布置1.课本第71页习题2.2第2、3、5、8题。2.选用课时作业设计。初中优秀数学教案设计篇5一、教材分析本节内容是人民教育出版社出版义务教育课程实验教科书(五四学制)数学(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。二、设计思想本节内
16、容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。三、教学目标:(一)知识技能目标:1、理解同类
17、项的含义,并能辨别同类项。2、掌握合并同类项的方法,熟练的合并同类项。3、掌握整式加减运算的方法,熟练进行运算。(二)过程方法目标:1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。(三)情感价值目标:1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。2、通过学习活动培养学生科学、严谨的学习态度。四、教学重、难点:合并同类项五、教学关键:同类项的概念六、教学准备:教师:1、筛选数学题目,精心设置问题情境。2、制作大小不等的两个长方体纸盒实物模型,并能展开。3、设计多媒体教学课件。(要凸显单项式中系数、字母、指数的特征长方体纸盒立体图、展开图。)学生:1、复习有关单项式的概念、有理数四则运算及去括号的法则)2、每小组制作大小不等的两个长方体纸盒模型。
限制150内