小升初奥数几何部分教案.ppt
《小升初奥数几何部分教案.ppt》由会员分享,可在线阅读,更多相关《小升初奥数几何部分教案.ppt(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何部分几何部分正方形、三角形的性质正方形、三角形的性质三角形等积转换三角形等积转换 (鸟头定理)(鸟头定理)相似三角形相似三角形矩形面积切割定理矩形面积切割定理三角形燕尾定理三角形燕尾定理四边形、梯形蝴蝶定理四边形、梯形蝴蝶定理求阴影部分面积求阴影部分面积毕克定理毕克定理多边形的性质多边形的性质立体图形体积和表面积立体图形体积和表面积圆的性质圆的性质多边形多边形在平面内由不在同一直线上的一些线段首尾顺次相接围成的图形叫做多边形,N边形有条边,个顶点,个内角。多边形的内角和为(n-2)180,外角和为360这个就是多边形的一个这个就是多边形的一个外角外角怎么证明多边形的内角和呢?在多边形内任取
2、一点,连接这一点和所有顶点过其中的一个顶点,连接所有的对角线正多边形凹多边形非正多边形多边形凸多边形多边形的分类多边形的分类凸多边形的性质:凸多边形的性质:1.内角均小于180,内角和为(n-2)180,外角和为3602.凸多边形内角中锐角的个数不能多于三个3.凸多边形的对角线都在多边形的内部,对角线的条数为n(n-3)21.1.一个多边形的每一个内角都等于一个多边形的每一个内角都等于144144,求这个多边形的边,求这个多边形的边数。数。2.2.如果一个多边形的边数增加一倍,它的内角和是如果一个多边形的边数增加一倍,它的内角和是21602160,那么原来多边形的边数是那么原来多边形的边数是3
3、 3 某同学在计算多边形的内角和时,得到的答案是某同学在计算多边形的内角和时,得到的答案是11251125,老师指出他少加了一个内角的度数,你知道这个同学计算老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少的是几边形的内角和吗?他少加的那个内角的度数是多少?4.4.有两个正多边形,它们的边数的比是有两个正多边形,它们的边数的比是1 1:2 2,内角和之比为,内角和之比为3 3:8 8,则这两个多边形的边数之和为多少?,则这两个多边形的边数之和为多少?5.5.多边形每一个内角都等于多边形每一个内角都等于150150,则从此多边形一个顶点发,则从
4、此多边形一个顶点发出的对角线有出的对角线有 6.一个多边形截去一个角后,变为16边形,则原来的多边形的边数为()不同的截法,有不同的结果,以四边形不同的截法,有不同的结果,以四边形ABCDABCD为例,设为例,设E E、F F分别为分别为ABAB、ADAD上的点。上的点。(1 1)若沿)若沿EFEF截下去,则截下去,则FEBCDFEBCD是一个五边形,有五个角。是一个五边形,有五个角。(2 2)若沿)若沿BFBF截下去,则截下去,则FBCDFBCD是一个四边形,有四个角。是一个四边形,有四个角。(3 3)若沿)若沿BDBD截下去,则截下去,则BDCBDC是一个三角形,有三个角。是一个三角形,有
5、三个角。因此本题的答案,可能是因此本题的答案,可能是1717边形,可能是边形,可能是1616边形也可能是边形也可能是1515边形。边形。返回用多边形铺地板用多边形铺地板满足的条件是:围绕一点拼在一起的几个多边形的内角加在一起恰好组满足的条件是:围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。成一个周角时,就能拼成一个平面图形。当为一种图形进行拼接时:正多边形的个数正多边形的内角度数=360两种多边形拼接时满足的条件:正多边形1的个数正多边形1的内角度数+正多边形2的个数正多边形2的内角度数=360练习题练习题返回返回圆和扇形如左图所示,200米赛跑的起点和终
6、点都在直跑道上,中间的弯道是一个半圆。已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于内外跑道的半个圆的周长。虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为R-r(R-r)3.141.223.83(米)。即外道的起点在内道起点前面3.83米。例题1例题例题2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆,此时橡皮筋的长度是多少厘米?分析与
7、解:分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360,所以BC弧所对的圆心角是60,6个BC弧等于直径5厘米的圆的周长。而线段AB等于塑料管的直径,由此知绳长=5653.1445.7(厘米)。例题例题3如图1所示,四个圆的半径都是5厘米,求阴影部分的面积。图 1分析与解:分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2r
8、22=1023.1450257(厘米2)。例题例题4正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?例题例题5如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?由于齿轮齿数与圈数成反比,所以甲、乙、丙三个齿轮的齿数有如下关系:甲:乙=7:5=14:10乙:丙=2:7=10:35甲:乙:丙=14:10:35例题例题 6草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左图)。问:这只羊能够活动的范围有多大?例题例题7用四条直线最多能将一个圆分成几块?用
9、100条直线呢?由上面的分析可以看出,画第n条直线时应当与前面已画的(n1)条直线都相交,此时将增加n块。因为一开始的圆算1块,所以n条直线最多将圆分成1(123n)=1n(n+1)2(块)。当n=100时,可分成1100(1001)2=5051(块)。返回例题1ABCDOEF引申拓展如图,正方形ABCD的边长是6,O是正方形的中心,其中EO垂直于OF,求四边形EOFD的面积桌面上有若干张大小相等的正方形纸片,按照顺桌面上有若干张大小相等的正方形纸片,按照顺序一张一张的摆放,要求后摆的纸片必须有一个序一张一张的摆放,要求后摆的纸片必须有一个顶点与前一张纸片的中心重合。顶点与前一张纸片的中心重合
10、。求:求:如果有如果有5张纸片,桌面被覆盖的面积是多少?张纸片,桌面被覆盖的面积是多少?如果有如果有N张纸片呢?张纸片呢?正方形的性质正方形的性质例题例题2如图,在大正方形中画一个最大的圆,圆内画一个最大的正方形,如此下去,共画了4个正方形,求最大正方形和最小正方形的面积之比。正方形的性质正方形的性质例题例题3正方形ABCD的边长为6,点E、F分别为AD、BC的中点,M、N、K分别是AB、CD的三等分点,P为正方形ABCD内任意一点,求阴影部分的面积。三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边。n n已知五条线段长分别为已知五条线段长分别为3 3,5 5,7 7,9 9,1
11、111,若每次,若每次以其中三条线段为边组成三角形,则最多可构成以其中三条线段为边组成三角形,则最多可构成互不全等的三角形(互不全等的三角形()个)个解:解:解:解:先确定最大边,只要较小两边之和大于最大边长,即可先确定最大边,只要较小两边之和大于最大边长,即可构成三角形,由此易得,可构成的三角形的三边长为构成三角形,由此易得,可构成的三角形的三边长为1111、3 3、9 9;1111、5 5、7 7;1111、5 5、9 9;1111、7 7、9 9;9 9、3 3、7 7;9 9、5 5、7 7;7 7、3 3、5 5;共;共7 7个。个。n n已知等腰三角形的周长是已知等腰三角形的周长是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初奥数 几何 部分 教案
限制150内