血管分支模型精选课件.ppt
《血管分支模型精选课件.ppt》由会员分享,可在线阅读,更多相关《血管分支模型精选课件.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于血管分支模型第一页,本课件共有23页1.1.几何假设几何假设一条粗血管和两条细血管在分支点对称地处于同一平面。(在同一平面内消耗的能量是最小的,在三维的或者是扭曲的平面上消耗的能量可能会比较大。)2.2.物理假设物理假设 血液流动近似于粘性流体在刚性管道中的运动,血管壁是没有弹性的。决定阻力的大小3.3.生理假设生理假设 血液给血管壁的能量随管壁的内表面积和体积的增加而增加,管壁厚度d近似与血管半径r成正比。越粗的血管内表面积越大,管壁越粗吸收的能量就越多。决定吸收能量的大小模型假设模型假设qq1q1ABBCHLll1rr1 考虑血管分支AC、CB与CBq=2q1第二页,本课件共有23页黏
2、性流体在刚性管道中运动HagenPoiseuille equation【给一个超链接跳到介绍Poiseuille这个人那一页】令体积流率【单位时间通过特定表面积的流体体积】血管两端压力差(AC)黏性系数【取决于管壁和相应流体的黏度】血管的半径血管的长度-(1)模型建立模型建立第三页,本课件共有23页泊肃叶(Jean-Louis-Marie Poi-seuille,17991869)法国生理学家。他在巴黎综合工科学校毕业后,又攻读医学,长期研究血液在血管内的流动。在求学时代即已发明血压计用以测量狗主动脉的血压。他发表过一系列关于血液在动脉和静脉内流动的论文(最早一篇发表于1819年)。其中184
3、01841年发表的论文小管径内液体流动的实验研究对流体力学的发展起了重要作用。他在文中指出,流量与单位长度上的压力降并与管径的四次方成正比。这定律后称为泊肃叶定律。由于德国工程师G.H.L.哈根在1839年曾得到同样的结果,W.奥斯特瓦尔德在1925年建议称该定律为哈根泊肃叶定律。【此处跳转到介绍定理的那一页】泊肃叶和哈根的经验定律是G.G.斯托克斯于1845年建立的关于粘性流体运动基本理论的重要实验证明。现在流体力学中常把粘性流体在圆管道中的流动称为泊肃叶流动。医学上把小血管管壁近处流速较慢的流层称为泊肃叶层。1913年,英国 R.M.迪利和 P.H.帕尔建议将动力粘度的单位依泊肃叶的名字命
4、名为泊(poise),1泊1达因秒/厘米2。1969年国际计量委员会建议的国际单位制(SI)中,动力粘度单位改用帕斯卡秒,1帕斯卡秒=10泊。第四页,本课件共有23页泊肃叶定律(Poiseuilles law)也称为帕醉定律、哈根-泊肃叶定律(Hagen-Poiseuilles law)、哈根-帕醉方程(Hagen-Poiseuilles equation),是描述流体流经细管(如血管和导尿管等)所产生的压力损失,压力损失和体积流率、动黏度和管长的乘积成正比,和管径的四次方成反比例。此定律适用于不可压缩、不具有加速度、层流稳定且长于管径的牛顿流体。泊肃叶定律是让泊肃叶于1838年和戈特希尔夫哈
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 血管 分支 模型 精选 课件
限制150内