哈尔滨工程大学 自动控制原理 第3章 线性系统的可控性与可观测性讲课教案.ppt
《哈尔滨工程大学 自动控制原理 第3章 线性系统的可控性与可观测性讲课教案.ppt》由会员分享,可在线阅读,更多相关《哈尔滨工程大学 自动控制原理 第3章 线性系统的可控性与可观测性讲课教案.ppt(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、哈尔滨工程大学 自动控制原理 第3章 线性系统的可控性与可观测性第3章 线性系统的可控性和可观测性 3.1 可控性和可观测性的定义可控性和可观测性的定义 3.2 线性定常连续系统的可控性判据线性定常连续系统的可控性判据()3.3 线性定常连续系统的可观测性判据(线性定常连续系统的可观测性判据()3.4 对偶原理对偶原理第三章第三章 线性系统的可控性与可观测性线性系统的可控性与可观测性2第3章 线性系统的可控性和可观测性 第3章 线性系统的可控性和可观测性 第3章 线性系统的可控性和可观测性 第3章 线性系统的可控性和可观测性 二二 可控性可控性1状态可控状态可控考虑考虑n维线性时变系统的状态方
2、程维线性时变系统的状态方程如果对取定初始时刻如果对取定初始时刻 的一个非零初始状态的一个非零初始状态x(t0)=x0,存在一个时刻,存在一个时刻 和一个无约束的和一个无约束的容许控制容许控制u(t),使状态由,使状态由x(t0)=x0转移到转移到t1时的时的x(t1)=0,则称此,则称此x0是在时刻是在时刻t0可控的可控的.6第3章 线性系统的可控性和可观测性 2系统可控系统可控如如果果状状态态空空间间中中的的所所有有非非零零状状态态都都是是在在t0()时时刻刻可可控控的的,则则称称系系统统在在时时刻刻t0是是完完全全可可控控的的,简简称称系系统统在在时时刻刻t0可可控控。若若系系统统在在所所
3、有时刻都是可控的,则称有时刻都是可控的,则称系统是一致可控的。系统是一致可控的。考虑考虑n维线性时变系统的状态方程维线性时变系统的状态方程7第3章 线性系统的可控性和可观测性 3系统不完全可控系统不完全可控 对于线性时变系统对于线性时变系统取取定定初初始始时时刻刻 ,如如果果状状态态空空间间中中存存在在一一个个或或一一些些非非零零状状态态在在时时刻刻t0是是不不可可控控的的,则则称称系系统统在在时时刻刻t0是是不不完完全全可可控控的的,也也称称为为系系统统是是不不可控的可控的。8第3章 线性系统的可控性和可观测性 4状态可达与系统可达状态可达与系统可达 对于线性时变系统对于线性时变系统若若存存
4、在在能能将将状状态态x(t0)=0转转移移到到x(tf)=xf的的控控制制作作用用,则则称称状状态态xf是是t0时时刻刻可可达达的的。若若xf对对所所有有时时刻刻都都是是可可达达的的,则则称称状状态态xf为为完完全全可可达达到到或或一一致致可可达达。若若系系统统对对于于状状态态空空间间中中的的每每一一个个状状态态都都是是时时刻刻t0可可达达的的,则则称称该该系系统统是是t0时时刻刻完完全全可可达达的的,或或简简称称系系统统是是t0时刻可达的时刻可达的。9第3章 线性系统的可控性和可观测性 三可观测性三可观测性1系统完全可观测系统完全可观测 对于线性时变系统对于线性时变系统如如果果取取定定初初始
5、始时时刻刻 ,存存在在一一个个有有限限时时刻刻 ,对对于于所所有有 ,系系统统的的输输出出y(t)能能唯唯一一确确定定状状态态向向量量的的初初值值x(t0),则则称称系系统统在在t0,t1内内是是完完全全可可观观测测的的,简简称称可可观观测测。如如果果对对于于一一切切t1t0系系统统都都是是可可观观测测的的,则则称称系系统统在在t0,)内是完全可观测的。内是完全可观测的。10第3章 线性系统的可控性和可观测性 2系统不可观测系统不可观测 对于线性时变系统对于线性时变系统如如果果取取定定初初始始时时刻刻 ,存存在在一一个个有有限限时时刻刻 ,对对于于所所有有 ,系系统统的的输输出出y(t)不不能
6、能唯唯一一确确定定所所有有状状态态的的初初值值xi(t0),i=0,1,n,即即至至少少有有一一个个状状态态的的初初值值不不能能被被y(t)确确定定,则则称称系系统统在在t0,t1内内是是不不完完全全可可观观测测的的,简简称称不可观测不可观测。11第3章 线性系统的可控性和可观测性 3.2 线性定常连续系统的可控性判据线性定常连续系统的可控性判据()一、线性定常连续系统的可控性判据(一、线性定常连续系统的可控性判据()1 1格拉姆矩阵判据格拉姆矩阵判据格拉姆矩阵判据格拉姆矩阵判据线性定常系统线性定常系统 完完全全可可控控的的充充分分必必要要条条件件是是:存存在在一一个个有有限限时时刻刻t10,
7、使如下定义的格拉姆矩阵:,使如下定义的格拉姆矩阵:为非奇异。为非奇异。注注意意:在在应应用用该该判判据据时时需需计计算算eAt,这这在在A的的维维数数较较高时并非易事,所以高时并非易事,所以此判据主要用于理论分析中此判据主要用于理论分析中。12第3章 线性系统的可控性和可观测性 证证:充充分分性性:已已知知W(0,t1)为为非非奇奇异异,欲欲证证系系统统为为完完全全可可控控,采采用用构构造造法法来来证证明明。对对任任一一非非零零初初始始状状态态x0可可构造控制构造控制u(t)为:为:则则u(t)作用下系统状态作用下系统状态x(t)在在t1时刻的结果时刻的结果:这这表表明明:对对任任一一取取定定
8、的的初初始始状状态态x00,都都存存在在有有限限时时刻刻t10和和控控制制u(t),使使状状态态由由x0转转移移到到t1时时刻刻的的状状态态x(t1)=0,根据定义可知系统为完全可控。,根据定义可知系统为完全可控。13第3章 线性系统的可控性和可观测性 必必要要性性:已已知知系系统统完完全全可可控控,欲欲证证W(0,t1)非非奇奇异异。反反设设W(0,t1)为奇异,即存在某个非零向量为奇异,即存在某个非零向量 ,使,使其中其中|为范数,故其必为非负。欲使上式成立,必有为范数,故其必为非负。欲使上式成立,必有14第3章 线性系统的可控性和可观测性 因系统完全可控,根据定义对此非零向量因系统完全可
9、控,根据定义对此非零向量 应有应有 0此此结结果果与与假假设设 相相矛矛盾盾,即即W(0,t1)为为奇奇异异的的反反设设不不成成立立。因此,若系统完全可控,因此,若系统完全可控,W(0,t1)必为非奇异。必为非奇异。15第3章 线性系统的可控性和可观测性 2 2秩判据(秩判据(秩判据(秩判据()1)凯莱)凯莱-哈密顿定理:哈密顿定理:设设n阶矩阵阶矩阵A的特征多项式为的特征多项式为则矩阵则矩阵A满足其特征方程,即满足其特征方程,即2)推论推论1:矩阵矩阵A的的k(kn)次幂可表示为次幂可表示为A的的(n-1)阶多阶多项式项式注:注:此推论可用以简化矩阵幂的计算。此推论可用以简化矩阵幂的计算。1
10、6第3章 线性系统的可控性和可观测性 3)推论)推论2:矩阵指数函数可表示为矩阵指数函数可表示为A的的(n-1)阶多项式阶多项式例例3-4(P476 例例9-13):已知):已知 ,计算,计算A100=?解:解:A的特征多项式为:的特征多项式为:由凯莱由凯莱-哈密顿定理,得到哈密顿定理,得到17第3章 线性系统的可控性和可观测性 故故根据数学归纳法有根据数学归纳法有所以:所以:18第3章 线性系统的可控性和可观测性 4)秩判据()秩判据()线性定常系统线性定常系统 完全可控的充分必要条件是完全可控的充分必要条件是 其中其中:n为矩阵为矩阵A的维数,的维数,称为系统称为系统的可控性判别阵。的可控
11、性判别阵。注:注:秩判据是一种比较方便的判别方法。秩判据是一种比较方便的判别方法。19第3章 线性系统的可控性和可观测性 证证明明:充充分分性性:已已知知rankS=n,欲欲证证系系统统完完全全可可控控,采用反证法。反设系统为不完全可控,则有:采用反证法。反设系统为不完全可控,则有:为奇异,这意味着存在某个非零为奇异,这意味着存在某个非零n维常向量维常向量使使将上式求导直到将上式求导直到(n-1)次,再在所得结果中令次,再在所得结果中令t=0,则,则可得到可得到:20第3章 线性系统的可控性和可观测性 由由于于0,所所以以上上式式意意味味着着S为为行行线线性性相相关关的的,即即rankSn。这
12、这显显然然与与已已知知rankS=n相相矛矛盾盾。因因而而反反设不成立,系统应为完全可控,充分性得证。设不成立,系统应为完全可控,充分性得证。必必要要性性:已已知知系系统统完完全全可可控控,欲欲证证rankS=n,采采用用反反证证法法。反反设设rankSn,这这意意味味着着S为为行行线线性性相相关关,因此必存在一个非零因此必存在一个非零n维常向量维常向量使使 成立。成立。21第3章 线性系统的可控性和可观测性(由凯莱(由凯莱哈密顿定理)哈密顿定理)22第3章 线性系统的可控性和可观测性 因因为为已已知知0,若若上上式式成成立立,则则格格拉拉姆姆矩矩阵阵W(0,t1)为为奇奇异异,即即系系统统为
13、为不不完完全全可可控控,和和已已知知条条件件相相矛矛盾盾,所所以反设不成立。于是有以反设不成立。于是有rankS=n,必要性得证。,必要性得证。23第3章 线性系统的可控性和可观测性 例例3-6(补充)(补充):已知:已知判断其能控性。判断其能控性。解:解:系统阶次系统阶次,确定出可控判别阵,确定出可控判别阵,所以系统为完全可控。,所以系统为完全可控。24第3章 线性系统的可控性和可观测性 例例3-7(补充):判断下列系统的可控性(补充):判断下列系统的可控性解:解:系统阶次系统阶次n=3矩阵矩阵S的第二行与第三行线性相关,的第二行与第三行线性相关,故故rankS=23,系统不可控。,系统不可
14、控。25第3章 线性系统的可控性和可观测性 补充:可控性判别矩阵补充:可控性判别矩阵 ():线性定常连续系统的状态方程线性定常连续系统的状态方程其其中中:x为为n维维状状态态向向量量;u为为p维维输输入入向向量量;A和和B分分别别为为(nn)和和(np)常常阵阵。该该线线性性定定常常连连续系统完全可控的充要条件是:续系统完全可控的充要条件是:其中:其中:注:注:该方法是秩判据的改进,特别该方法是秩判据的改进,特别适用于多输入适用于多输入 系统系统,可减少不必要的计算。,可减少不必要的计算。26第3章 线性系统的可控性和可观测性 例例3-8:用可控性判别矩阵:用可控性判别矩阵 判别例判别例3-7
15、所示系统所示系统的可控性。的可控性。解:解:n=3,系统输入向量是系统输入向量是2维的列向量,即维的列向量,即p=2。显见矩阵显见矩阵S3-2的第二行与第三行线性相关,的第二行与第三行线性相关,故故 ,系统不可控。,系统不可控。27第3章 线性系统的可控性和可观测性 3PBH秩判据(秩判据()线性定常系统线性定常系统 完全可控的充分必要条件是:对矩阵完全可控的充分必要条件是:对矩阵A的所有特征的所有特征值值 ,均成立,或等价地表示为均成立,或等价地表示为注注:当当系系统统矩矩阵阵A的的维维数数较较高高时时,应应用用秩秩判判据据可可能能不不太方便,此时可考虑用太方便,此时可考虑用PBH秩判据试一
16、下。秩判据试一下。28第3章 线性系统的可控性和可观测性 证证明明:,为为多多项项式式矩矩阵阵,且且对对复复数数域域上上除除i以以外外的的所所有有s都都有有det(sI-A)0,即即ranksI-A=n,进而有,进而有ranksI-A B=n,所以只要证明,所以只要证明 即可。即可。必要性:必要性:系统完全可控,欲证上式成立,采用反证法。系统完全可控,欲证上式成立,采用反证法。反设对某个反设对某个i 有有rankiI A B n,则意味着,则意味着 iIA B为为行线性相关。由此,必存在一个非零常向量行线性相关。由此,必存在一个非零常向量,使,使成立。考虑到问题的一般性,由上式可得到:成立。考
17、虑到问题的一般性,由上式可得到:29第3章 线性系统的可控性和可观测性 进而可得进而可得:于是有于是有因已知因已知0,所以欲使上式成立,必有,所以欲使上式成立,必有这这意意味味着着系系统统不不完完全全可可控控,显显然然与与已已知知条条件件相相矛矛盾盾。因此,反设不成立,即因此,反设不成立,即rankiI A B=n成立。成立。充充分分性性:已已知知式式rankiI A B=n成成立立,欲欲证证系系统统完完全全可可控控。采采用用反反证证法法:利利用用和和上上述述相相反反的的思思路路,即即可可证证得充分性。得充分性。30第3章 线性系统的可控性和可观测性 例例3-9(P477 例例9-14):已知
18、线性定常系统状态方程为):已知线性定常系统状态方程为判断系统的可控性。判断系统的可控性。解:解:根据状态方程可写出根据状态方程可写出31第3章 线性系统的可控性和可观测性 特征方程:特征方程:解得解得A的特征值为:的特征值为:1)当)当 时,有时,有 32第3章 线性系统的可控性和可观测性 2)当)当 时,有时,有 3)当)当 时,有时,有 所以系统是完全可控的。所以系统是完全可控的。33第3章 线性系统的可控性和可观测性 4PBH特征向量判据(补充)特征向量判据(补充)线性定常系统线性定常系统 完完全全可可控控的的充充分分必必要要条条件件是是:A不不能能有有与与B的的所所有有列列相相正正交交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 哈尔滨工程大学 自动控制原理 第3章 线性系统的可控性与可观测性讲课教案 哈尔滨工程 大学 自动控制 原理 线性 系统 可控性 观测 讲课 教案
限制150内