中考专题复习圆教程文件.ppt
《中考专题复习圆教程文件.ppt》由会员分享,可在线阅读,更多相关《中考专题复习圆教程文件.ppt(89页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考专题复习圆中考专题复习圆一、知识结构一、知识结构知识结构知识结构(一一)圆的基本性质圆的基本性质弧、弦与圆心角的关系弧、弦与圆心角的关系圆周角与圆心角关系圆周角与圆心角关系垂径定理垂径定理圆周角定理圆周角定理OABCDM垂径定理垂径定理圆的基本性质圆的基本性质知识结构知识结构OABDA1B1D1圆心角、弧、弦、圆心角、弧、弦、弦心距的关系弦心距的关系圆的基本性质圆的基本性质知识结构知识结构 AB=A1B1 AOB=A1OB1OD=OD1OBACDE圆周角定理圆周角定理CABO圆的基本性质圆的基本性质知识结构知识结构 直径所对的直径所对的圆周角是直角,圆周角是直角,直角圆周角所对直角圆周角所
2、对的弦是直径。的弦是直径。在同圆或等圆中,在同圆或等圆中,同弧或等弧所对的圆同弧或等弧所对的圆周角相等。周角相等。圆的基本性质圆的基本性质知识结构知识结构2 2、同弧所对的圆周角是圆心角的一半、同弧所对的圆周角是圆心角的一半圆的基本性质圆的基本性质知识结构知识结构一、知识结构一、知识结构知识结构知识结构(二二)与圆有关的位置关系与圆有关的位置关系点与圆的位置关系点与圆的位置关系圆与圆的位置关系圆与圆的位置关系直线与圆的位置关系直线与圆的位置关系切线切线圆圆的的切切线线切线长切线长、点与圆的位置关系ABC点与圆的点与圆的位置关系位置关系点到圆心的距离点到圆心的距离d d与圆的半与圆的半径径r r
3、之间关系之间关系点在圆外点在圆外点在圆上点在圆上点在圆内点在圆内Odrdrdrd=rd=rdrdr与圆有关的位置关系与圆有关的位置关系知识结构知识结构直线和圆的位置关系直线与圆直线与圆的位置关的位置关系系圆心与直线的距圆心与直线的距离离d与圆的半径与圆的半径r的关系的关系直线名称直线名称 直线与圆的直线与圆的交点个数交点个数相离相离相切相切相交相交ldrd r0d=r切线切线1d r割线割线2知识结构知识结构与圆有关的位置关系与圆有关的位置关系OO相交相交O相切相切相离相离rrrddd与圆有关的位置关系与圆有关的位置关系知识结构知识结构切线的性质与判定切线的性质与判定ABCODEFABCOOD
4、EF知识结构知识结构与圆有关的位置关系与圆有关的位置关系切线长定理切线长定理E E切线长定理切线长定理知识结构知识结构与圆有关的位置关系与圆有关的位置关系外离外离外切外切相交相交内切内切内含内含01210dR+rd=R+rR-rdR+rd=R-rdR-r公共点公共点圆心距和半径的关系圆心距和半径的关系两圆位置两圆位置一圆在另一一圆在另一圆的外部圆的外部一圆在另一一圆在另一圆的外部圆的外部两圆相交两圆相交一圆在另一一圆在另一圆的内部圆的内部一圆在另一一圆在另一圆的内部圆的内部名称名称、圆与圆的位置关系、圆与圆的位置关系内含内含内含内含相交相交相交相交外离外离外离外离R Rr r外切外切外切外切R
5、 Rr r内切内切内切内切0 0知识结构知识结构与圆有关的位置关系与圆有关的位置关系与圆有关的位置关系与圆有关的位置关系知识结构知识结构一、知识结构一、知识结构知识结构知识结构(三三)圆中的计算圆中的计算扇形面积扇形面积,弧长弧长,圆锥的侧面积和全面积圆锥的侧面积和全面积扇形面积的计算公式为扇形面积的计算公式为S=或或 S=r弧长的计算公式为:弧长的计算公式为:=2r=知识结构知识结构圆中的计算圆中的计算OPABrhl圆锥中圆锥中:S侧侧=知识结构知识结构圆中的计算圆中的计算圆锥的侧面积和全面积圆锥的侧面积和全面积 二、基本图形(重要结论)二、基本图形(重要结论)A AB BC CD DP P
6、O O.、垂直于弦的直径、垂直于弦的直径平分弦及弦所对的弧平分弦及弦所对的弧2、母子相似、母子相似3、直径所对的圆周角、直径所对的圆周角是直角是直角 二、基本图形(重要结论)二、基本图形(重要结论)(一一)基本图形基本图形 重要结论重要结论基本图形基本图形 重要结论重要结论B BC CD DP PO OE E、垂直于弦的直径平分弦及弦所对的弧、垂直于弦的直径平分弦及弦所对的弧2 2、同弧所对的圆周角是圆心角的一半、同弧所对的圆周角是圆心角的一半(二二)基本图形基本图形 重要结论重要结论B BC CA A O O已知已知ABC内接于内接于 O,过点,过点O分别作分别作OD BC,OEAB,OFA
7、C,则,则OD:OF:OE=()分析分析:1)找基本图形)找基本图形2)在)在Rt BOD中,中,设半径为设半径为r,则则 cosBOD=cosA=OD:rcosCOF=cosB=OF:rcosAOE=cosC=OE:rA.sinA:sinB:sinC B.cosA:cosB:cosC A.sinA:sinB:sinC B.cosA:cosB:cosC C.tanA:tanB:tanC D.cotA:cotB:cotCC.tanA:tanB:tanC D.cotA:cotB:cotCBBOD=BACBOD=BAC,COF=ABCCOF=ABC,AOE=ACBAOE=ACB;基本图形基本图形 重
8、要结论重要结论切线长定理切线长定理母子相似母子相似垂直于弦的直径平分弦垂直于弦的直径平分弦(三三)E E基本图形基本图形 重要结论重要结论 如图如图,若若AB,ACAB,AC与与OO相切与点相切与点B,CB,C两点两点,P,P为弧为弧 BC BC上任意一点上任意一点,过点过点P P作作OO的切线交的切线交AB,ACAB,AC于于 点点D,E,D,E,若若AB=8,AB=8,则则ADEADE的周长为的周长为_;16cm若若A=70,A=70,则则BPC=_ BPC=_;125过点过点P P作作OO的切线的切线MN,MN,BPC=_;BPC=_;(用用AA表示表示)90-AM M基本图形基本图形
9、重要结论重要结论A AB BC CD DF FE E.a ac cb bS ABC=C ABC r内AD=AF=(b+c-a)BD=BE=(a+c-b)CE=CF=(a+b-c).基本图形基本图形 重要结论重要结论(四四)、RtABCRtABC的外接圆半径等于斜边的一半的外接圆半径等于斜边的一半AABCABCABC中中,C=90,AC=6cm,BC=8cm,C=90,AC=6cm,BC=8cm,则它则它 的外心与顶点的外心与顶点C C的距离是的距离是_;_;A.5cm B.6cm C.7cm D.8cm A.5cm B.6cm C.7cm D.8cm RtABCRtABC的内切圆半径等于两直角
10、边的的内切圆半径等于两直角边的和与斜边的差的一半和与斜边的差的一半基本图形基本图形 重要结论重要结论已知已知ABCABC外切于外切于O,O,(1)(1)若若AB=8,BC=6,AC=4,AB=8,BC=6,AC=4,则则AD=_;BE=_;CF=_;AD=_;BE=_;CF=_;(2)若若CABC=36,SABC=18,则则r内内=_;(3)(3)若若BE=3,CE=2,ABCBE=3,CE=2,ABC的周长为的周长为18,18,则则AB=_;AB=_;S ABC=C ABCr内18463517A AB BC CD DABABCDCDADADCBCB基本图形基本图形 重要结论重要结论(五五)、
11、相交两圆的连心线垂直平分公共弦、相交两圆的连心线垂直平分公共弦AO1O2B已知:已知:O O1 1和和O O2 2相交于相交于A A、B B(如图)(如图)求证:求证:O O1 1O O2 2是是ABAB的垂直平分线的垂直平分线证明:连结证明:连结O1A、O1B、O2A、O2B O1A=O1B O1点在点在AB的垂直平分线上的垂直平分线上 O2A=O2B O2点在点在AB的垂直平分线上的垂直平分线上 O1O2是是AB的垂直平分线的垂直平分线基本图形基本图形 重要结论重要结论半径分别是半径分别是20 cm和和15 cm的两圆相交,的两圆相交,公共弦长为公共弦长为24 cm,求两圆的圆心距?,求两
12、圆的圆心距?O1O2=O2C-O1C=16-9=7.O1O2=O2C+O1C=16+9=25.基本图形基本图形 重要结论重要结论(六)如图,设(六)如图,设OO的半径为的半径为r r,弦,弦ABAB的长为的长为a a,弦,弦 心距心距OD=dOD=d且且OCABOCAB于于D D,弓形高,弓形高CDCD为为h h,下面的说,下面的说 法或等式:法或等式:r=d+h,4r r=d+h,4r2 2=4d=4d2 2+a+a2 2 已知:已知:r r、a a、d d、h h中的任两个可求其他两个,中的任两个可求其他两个,其中正确的结论的序号是其中正确的结论的序号是()()A.B.A.B.C.D.C.
13、D.C Crhad基本图形基本图形 重要结论重要结论三三 基本运用基本运用基本运用基本运用圆的性质圆的性质 1.如图如图1,O为为ABC的外接圆,的外接圆,AB为直径,为直径,AC=BC,则则A的度数为(的度数为()A.30 B.40 C.45 D.60C2、如图、如图2,圆圆O切切PB于于点点B,PB=4,PA=2,则圆则圆O的半径是的半径是_ _OABP3(连连OB,OB BP)3.一块等边三角形的木板一块等边三角形的木板,边长为边长为1,现将木板沿水平现将木板沿水平线翻滚线翻滚(如图如图),那么那么B点从开始至结束所走过的路径点从开始至结束所走过的路径长度为长度为_.BB4、如图,在、如
14、图,在RtABC中,中,C=900,AC=2,AB=4,分别以,分别以AC,BC为直径作圆,则为直径作圆,则 图中阴影部分面积为图中阴影部分面积为 CAB基本运用基本运用圆的性质圆的性质 割割补补法法O基本运用基本运用圆的性质圆的性质易错点易错点1.在在O中,中,弦弦AB所对的圆心角所对的圆心角 AOB=100,2.则弦则弦AB所对的圆周角为所对的圆周角为_.500或或13002已知、是已知、是的两条平行弦,的两条平行弦,的的半径是,。半径是,。求、的距离求、的距离.BAODCFEODCBAFE分分类类思思想想7或或1 3.有一圆弧形桥拱,水面有一圆弧形桥拱,水面AB宽宽32米,米,当水面上升
15、当水面上升4米后水面米后水面CD宽宽24米,此米,此时上游洪水以每小时时上游洪水以每小时0.25米的速度米的速度上升,再通过几小时,洪水将会上升,再通过几小时,洪水将会漫过桥面?漫过桥面?基本运用基本运用生活中的圆生活中的圆垂垂径径定定理理解解:过过圆圆心心O作作OEAB于于E,延延长长后后交交CD于于F,交交CD于于H,设设OE=x,连连结结OB,OD,由勾股定理得,由勾股定理得 OB2=x2+162OD2=(x+4)2+122 X2+162=(x+4)2+122X=12OB=20FH=440.25=16(小时)(小时)答:再过答:再过16小时,洪水将会漫过桥面。小时,洪水将会漫过桥面。四、
16、小试牛刀四、小试牛刀四、小试牛刀四、小试牛刀1.1.根据下列条件根据下列条件,能且只能作一个圆的是能且只能作一个圆的是()A.A.经过点经过点A A且半径为且半径为R R作圆作圆;B.B.经过点经过点A A、B B且半径为且半径为R R作圆作圆;C.C.经过经过ABCABC的三个顶点作圆的三个顶点作圆;D.D.过不在一条直线上的四点作圆过不在一条直线上的四点作圆;2.2.能在同一个圆上的是能在同一个圆上的是()()A.A.平行四边形四个顶点平行四边形四个顶点;B.;B.梯形四个顶点梯形四个顶点;C.C.矩形四边中点矩形四边中点;D.;D.菱形四边中点菱形四边中点.C CC C3.3.两圆的圆心
17、都是点两圆的圆心都是点O,O,半径分别半径分别r r1 1,r,r2 2,且且 r r1 1OPOPr r2 2,那么点那么点P P在在()()A.O A.O内内 B.B.小小OO内内 C.O C.O外外 D.D.小小OO外外,大大OO内内 4.4.下列说法正确的是下列说法正确的是()()A.A.三点确定一个圆三点确定一个圆;B.B.一个三角形只有一个外接圆一个三角形只有一个外接圆;C.C.和半径垂直的直线是圆的切线和半径垂直的直线是圆的切线;D.D.三角形的内心到三角形三个顶点距离相等三角形的内心到三角形三个顶点距离相等.DB5.5.与三角形三个顶点距离相等的点与三角形三个顶点距离相等的点,
18、是这个三角是这个三角形的形的()()A.A.三条中线的交点三条中线的交点;B.;B.三条角平分线的交点三条角平分线的交点;C.C.三条高线的交点三条高线的交点;D.;D.三边中垂线的交点三边中垂线的交点;6.6.圆的半径为圆的半径为5cm,5cm,圆心到一条直线的距离是圆心到一条直线的距离是7cm,7cm,则直线与圆则直线与圆()()A.A.有两个交点有两个交点;B.;B.有一个交点有一个交点;C.C.没有交点没有交点;D.;D.交点个数不定交点个数不定D DC C7.7.若两圆的半径分别为若两圆的半径分别为R,r,R,r,圆心距为圆心距为d,d,且满足且满足R R2 2+d+d2 2=r=r
19、2 2+2Rd,+2Rd,则两圆的位置关则两圆的位置关系为系为()()A.A.内切内切 B.B.内切或外切内切或外切 C.C.外切外切 D.D.相交相交由题意由题意:R R2 2+d+d2 22Rd=r2Rd=r2 2 即即:(Rd)2=r2 Rd=r Rr =d即即两圆内切或外切两圆内切或外切8.(8.(苏苏州州市市)如如图图,四四边边形形ABCDABCD内内接接于于OO,若若它它的一个外角的一个外角DCE=70DCE=70,则,则BOD=(BOD=()A A35 B.7035 B.70 C C110 D.140110 D.140 D 9 9、(广州市广州市)如图,如图,A A是半径为是半径
20、为5 5的的OO内的内的 一点,且一点,且OA=3OA=3,过点,过点A A且长小于且长小于8 8的的 ()()A.0 A.0条条 B.1 B.1条条 C.2 C.2条条 D.4 D.4条条 A过点过点A A且弦长为整数的弦有且弦长为整数的弦有()()条条 4 41010、在等腰、在等腰ABCABC中,中,AB=AC=2cmAB=AC=2cm,若以,若以A A为圆心,为圆心,1cm1cm为半径的圆与为半径的圆与BCBC相切,则相切,则ABCABC的度数为的度数为 ()A A、30 B30 B、60 C60 C、90 D90 D、120120A AC CB B2 22 2D DA A1111、定
21、圆、定圆0 0的半径是的半径是4cm,4cm,动圆动圆P P的半径是的半径是1cm,1cm,若若 P P和和 0 0相切相切,则符合条件的则符合条件的圆的圆心圆的圆心P P构成的图形是构成的图形是 ()解解:(1)若若 0和和 P外切,则外切,则OPR+r=5cm P点在以点在以O为圆心为圆心,5cm为半径的圆上;为半径的圆上;(2)(2)若若00和和PP内切,则内切,则OP=R-r=3cmOP=R-r=3cmPP点在以点在以O O为圆心为圆心,3cm,3cm为半径的圆上。为半径的圆上。解:设大圆半径解:设大圆半径R=3x,R=3x,小圆半径小圆半径r=2x r=2x 依题意得:依题意得:3x
22、-2x=83x-2x=8,解得:,解得:x=8x=8 R=24 cm R=24 cm,r=16cmr=16cm 两圆相交,两圆相交,R-rdR+rR-rdR+r 8cm d 40cm 8cm d 40cm1212、两个圆的半径的比为、两个圆的半径的比为2:3,2:3,内切时圆内切时圆心距等于心距等于8cm,8cm,那么这两圆相交时那么这两圆相交时,圆心距圆心距d d的取值的取值 范围是(范围是()13.ABC13.ABC中中,A=70,O,A=70,O截截ABCABC三条边所三条边所得的弦长相等得的弦长相等.则则 BOC=_.BOC=_.A.140A.140B.135B.135C.130C.1
23、30D.125D.125EMNGFDBCAOPQR RBOC90+AD1414、一一只只狸狸猫猫观观察察到到一一老老鼠鼠洞洞的的全全部部三三个个出出口口,它它们们不不在在一一条条直直线线上上,这这只只狸狸猫猫应应蹲蹲在在何处,才能最省力地顾及到三个洞口何处,才能最省力地顾及到三个洞口?【解解析析】在在农农村村、城城镇镇上上这这是是一一个个狸狸猫猫捉捉老老鼠鼠会会遇遇到到的的一一个个问问题题,我我们们可可以以为为这这个个小小动动物物设设计计或或计计算算出出来来.这这个个问问题题应应考考虑虑两两种种情情况况:设设三三个个洞洞口口分分别别为为A A、B B、C C三三点点,又又设设A A、C C相相
24、距最远距最远当当ABCABC为为钝钝角角三三角角形形或或直直角角三三角角形形时时,ACAC的中点即为所求的中点即为所求.当当ABCABC为为锐锐角角三三角角形形时时,ABCABC的的外外心心即即为所求为所求.15.15.梯形梯形ABCDABCD外切于外切于O,ADBC,AB=CD,O,ADBC,AB=CD,(1 1)若)若AD=4,BC=16,AD=4,BC=16,则则OO的直径为的直径为_;_;10MN(2 2)若)若AO=6,BO=8,AO=6,BO=8,则则S SOO=_=_;81818、如图、如图,以以O O为圆心的两同心圆的半径分别是为圆心的两同心圆的半径分别是11cm11cm和和9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 专题 复习 教程 文件
限制150内