二次函数y=ax^2+k的图像与性质复习课程.ppt
《二次函数y=ax^2+k的图像与性质复习课程.ppt》由会员分享,可在线阅读,更多相关《二次函数y=ax^2+k的图像与性质复习课程.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数二次函数y=ax2+ky=ax2+k的图的图像与性质像与性质y=ax2(a0)a0a0图图象象开口方向开口方向顶点坐标顶点坐标对称轴对称轴增增减减性性极值极值xyOyxO向上向上向下向下(0,0)(0,0)y轴y轴当当x0时,时,y随着随着x的增大而增大。的增大而增大。当当x0时,时,y随着随着x的增大而减小。的增大而减小。x=0时,y最小=0 x=0时,y最大=0抛物线y=ax2(a0)的形状是由|a|来确定的,一般说来,|a|越大,抛物线的开口就越小.x.-2-1012y=x241014y=x2+1 y=x2y=x2+15 2 1 2 5函数函数y=x2+1的图象与的图象与y=x2
2、的的图象的位置有什么关系图象的位置有什么关系?函数函数y=x2+1的图的图象可由象可由y=x2的图象的图象沿沿y轴向轴向上上平移平移1个单位长度得到个单位长度得到.函数函数y=x2+1的图的图象与象与y=x2的图象的的图象的形状相同吗形状相同吗?相同相同x.-2-1012y=x241014y=x2-2y=x2y=x2-22 -1 -2 -1 2函数函数y=x2-2的图象的图象可由可由y=x2的图象沿的图象沿y轴向轴向下下平移平移2个个单位长度得到单位长度得到.函数函数y=x2-2的图象与的图象与y=x2的的图象的位置有什么关系图象的位置有什么关系?函数函数y=x2-2的图象的图象与与y=x2的
3、图象的形的图象的形状相同吗状相同吗?相同相同 函数函数y=ax2(a0)和函数和函数y=ax2+k(a0)的图象形状的图象形状 ,只是位置不同;当,只是位置不同;当k0时,函数时,函数y=ax2+k的图象可的图象可由由y=ax2的图象向的图象向 平移平移 个单位得到,当个单位得到,当k0时,时,函数函数y=ax2+k的图象可由的图象可由y=ax2的图象的图象向向 平移平移 个单位得到。个单位得到。y=-x2-2y=-x2+3y=-x2函数函数y=-x2-2的图的图象可由象可由y=-x2的图的图象沿象沿y轴向轴向下下平移平移2个单位长度得到个单位长度得到.函数函数y=-x2+3的图的图象可由象可
4、由y=-x2的图的图象沿象沿y轴向轴向上上平移平移3个单位长度得到个单位长度得到.图象向上移还是向下移图象向上移还是向下移,移多少个移多少个单位长度单位长度,有什么规律吗有什么规律吗?上加下减上加下减相同相同上上k下下|k|(1)函数函数y=4x2+5的图象可由的图象可由y=4x2的图象的图象 向向 平移平移 个单位得到;个单位得到;y=4x2-11的图象的图象 可由可由 y=4x2的图象向的图象向 平移平移 个单位得到。个单位得到。(3)将抛物线)将抛物线y=4x2向上平移向上平移3个单位,所得的个单位,所得的 抛物线的函数式是抛物线的函数式是 。将抛物线将抛物线y=-5x2+1向下平移向下
5、平移5个单位个单位,所得的所得的 抛物线的函数式是抛物线的函数式是 。(2)将函数将函数y=-3x2+4的图象向的图象向 平移平移 个单位可得个单位可得 y=-3x2的图象;将的图象;将y=2x2-7的图象向的图象向 平移平移 个个 单位得到单位得到y=2x2的图象。将的图象。将y=x2-7的图象的图象 向向 平移平移 个单位可得到个单位可得到 y=x2+2的图象。的图象。上上5下下11下下4上上7上上9y=4x2+3y=-5x2-4 当当a0时,抛物线时,抛物线y=ax2+k的开口的开口 ,对称轴,对称轴是是 ,顶点坐标是,顶点坐标是 ,在对称轴的左侧,在对称轴的左侧,y随随x的的增大而增大
6、而 ,在对称轴的右侧,在对称轴的右侧,y随随x的增大而的增大而 ,当当x=时,取得最时,取得最 值,这个值等于值,这个值等于 ;当当a0时时,抛物线抛物线y=ax2+k的开口的开口 ,对称轴,对称轴是是 ,顶点坐标是,顶点坐标是 ,在对称轴的左侧,在对称轴的左侧,y随随x的的增大而增大而 ,在对称轴的右侧,在对称轴的右侧,y随随x的增大而的增大而 ,当当x=时,取得最时,取得最 值,这个值等于值,这个值等于 。y=-x2-2y=-x2+3y=-x2y=x2-2y=x2+1y=x2向上向上y轴轴(0,k)减小减小增大增大0小小k向下向下y轴轴(0,k)增大增大减小减小0大大k(4)抛物线)抛物线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 ax 图像 性质 复习 课程
限制150内