3.3频率与概率.ppt
《3.3频率与概率.ppt》由会员分享,可在线阅读,更多相关《3.3频率与概率.ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基础实验 概率实验计划n做什么?利用计算机模拟随机事件发生的概率,认识概率的古典和统计定义,寻找超几何分布,二项分布,Possion分布之间的关系。n怎么做?编程实现结果,并且在有关程序中改变参数值.n得到什么?认识超几何分布,二项分布,Possion分布之间的关系实验1 在甲已经两胜一负的基础上,在计算机上模拟两位棋手以后的比赛,计算他们应得的奖金(该比赛的总奖金为1000元)由于两位棋手的棋艺相当,可以假定他们在以下每一局的比赛中胜负的机会各半Mathematica中有产生0或1随机数的函数“RandomInteger”用这个函数可以产生随机数0或1,0与1出现的机会各占一半可以用随机数1
2、表示甲棋手胜,而随机数0表示乙胜也可以用0,1中的随机实数束模拟两人的胜负,随机数0.5表示甲胜,否则乙胜连续模拟1000次(或更多的次数),每次模拟到甲乙两方有一方胜了三局为止,按所说方案分配奖金1000次模拟结束后,计算两棋手每次的平均奖金,就是该棋手应得的奖金 注意这里的编程思想应用到了概率的统计定义n=100000的情况通过改变 n的值我们发现随着n的增大甲和乙得到奖金实验值与理论值非常接近。Mathematica程序:Mathematica编程思想:n=1000000的情况甲赢的概率 甲得到的奖金 乙赢的概率 乙得到的奖金 甲、乙模拟值与实验值的误差理论值:因为比赛只需再进行两局,就
3、可以分出胜负,结果无非是以下四种情况之一:甲甲,甲乙,乙甲,乙乙在这四种情况中,最后甲胜的情况有三种,乙胜的情况只有一种,而每种情况发生的可能性是一样的,所以甲最终得到1000元奖金的可能性是,而乙最终得到l 000元奖金的可能性是所以合理的分法是,甲得750元,乙得250元应用在计算机上列举出同时抛掷三颗骰子的所有可能结果,比较在一次试验中掷出的点数和为9与和为10这两个事件何者更容易发生n=1000n=10000n=100000Mathematica程序:结果分析:不管n怎么变化,都是发生和为10的事件的概率比发生和为9的事件的概率大。随着n的增大,所求概率总是在0.52附近摆动实验2 试
4、计算下列两个事件的概率:掷4次骰子,至少有一次出现一点。Mathematica程序(1):抛掷一对骰子24次,至少有一次出现两个一点理论值理论值:掷骰子4次,每次有6种可能,因此共有64种可能,又由于不出现1点的随机事件为54,从而至少有一次出现的随机事件数为64-54.由此得投掷4次骰子至少有一次出现一点的概率为(64-54)/64,即为0.51774691 理论值理论值:掷一对骰子共有6*6=36种可能,其中不出现两个一点的随机事件数为35,因此24次种不出现两个一点的概率为(35/36)4,从而掷一对骰子24次至少有一次出现两个一点的概率为1-(35/36)4,即为0.491404Mat
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.3 频率 概率
限制150内